リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Occurrence Distribution of Polar Cap Patches: Dependences on UT, Season and Hemisphere」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Occurrence Distribution of Polar Cap Patches: Dependences on UT, Season and Hemisphere

Kagawa, A. Hosokawa, K. Ogawa, Y. Ebihara, Y. Kadokura, A. 京都大学 DOI:10.1029/2020JA028538

2021.01

概要

Polar cap patches are islands of enhanced electron density in the polar cap F region ionosphere, which sometimes affect the propagation of trans-ionospheric radio waves. Considering the intake of daytime sunlit plasma by the high-latitude convection as the primary cause of patches, the spatial overlap between the convection and the daytime sunlit plasma should be one of the critical factors controlling the generation of patches. To confirm this hypothesis, we statistically investigated the UT and seasonal distributions of patch occurrence frequency in both the hemispheres by using in situ plasma density data from the Swarm satellite. As a result, it was found that the occurrence distribution of patches is a complex function of UT, season and hemisphere, but it can be mostly interpreted by the spatial overlap between the high-latitude convection and the solar terminator. This suggests that polar cap patches are not necessarily phenomena that occur only during winter months. That is, patches can often be observed even in periods away from the winter solstice if the location of solar terminator in the magnetic coordinate system is appropriate for the generation of patches. For example, in the southern hemisphere, where the offset between the geographic and magnetic poles is larger than that in the northern hemisphere, the highest patch occurrence rate is obtained around the equinoctial periods. These results indicate that it is needed to take these dependences into account when we discuss and predict the space weather impacts of patches on the trans-ionospheric radio propagation.

この論文で使われている画像

参考文献

Baker, K. B., & Wing, S. (1989). A new magnetic coordinate system for conjugate studies at high latitudes. Journal of Geophysical Research,

94(A7), 9139–9143. https://doi.org/10.1029/JA094iA07p09139

Buchert, S., Zangerl, F., Sust, M., Andre, M., Eriksson, A., Wahlund, J., & Opgenoorth, H. (2015). SWARM observations of equatorial

electron densities and topside GPS track losses. Geophysical Research Letters, 42, 2088–2092. https://doi.org/10.1002/2015GL063121

Carlson, H. C. (2012). Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques. Radio

Science, 47(4). https://doi.org/10.1029/2011RS004946

Chartier, A. T., Mitchell, C. N., & Miller, E. S. (2018). Annual occurrence rates of ionospheric polar cap patches observed using Swarm.

Journal of Geophysical Research: Space Physics, 123, 2327–2335. https://doi.org/10.1002/2017JA024811

Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A., et al. (2007). A decade of the Super Dual Auroral Radar

Network (SuperDARN): Scientific achievements, new techniques and future directions. Surveys in Geophysics, 28, 33–109. https://doi.

org/10.1007/s10712-007-9017-8

Clausen, L. B. N., Moen, J. I., Hosokawa, K., & Holmes, J. M. (2016). GPS scintillations in the high latitudes during periods of dayside and

nightside reconnection. Journal of Geophysical Research: Space Physics, 121, 3293–3309. https://doi.org/10.1002/2015JA022199

Coley, W. R., & Heelis, R. A. (1998). Structure and occurrence of polar ionization patches. Journal of Geophysical Research, 103(A2),

2201–2208. https://doi.org/10.1029/97JA03345

Crowley, G. (1996). Critical review of ionospheric patches and blobs. In W. R. Stone (Ed.), Review of radio science 1993-1996 (p. 619). New

York, NY: Oxford University Press.

David, M., Sojka, J. J., Schunk, R. W., & Coster, A. J. (2016). Polar cap patches and the tongue of ionization: A survey of GPS TEC maps from

2009 to 2015. Geophysical Research Letters, 43, 2422–2428. https://doi.org/10.1002/2016GL068136

David, M., Sojka, J. J., Schunk, R. W., & Coster, A. J. (2019). Hemispherical shifted symmetry in polar cap patch occurrence: A survey of

GPS TEC maps from 2015–2018. Geophysical Research Letters, 46, 10726–10734. https://doi.org/10.1029/2019GL083952

Fasel, G. J. (1995). Dayside poleward moving auroral forms: A statistical study. Journal of Geophysical Research, 100(11), 11891–11905.

https://doi.org/10.1029/95JA00854

Friis-Christensen, E., Lühr, H., Knudsen, D., & Haagmans, R. (2008). Swarm An Earth Observation Mission investigating Geospace. Advances in Space Research, 41, 210–216. https://doi.org/10.1016/j.asr.2006.10.008

Hosokawa, K., Shiokawa, K., Otsuka, Y., Ogawa, T., St-Maurice, J.-P., Sofko, G. J., & Andre, D. A. (2009). The relationship between polar cap

patches and field-aligned irregularities as observed with an all-sky airglow imager at Resolute Bay and the PolarDARN radar at Rankin

Inlet. Journal of Geophysical Research, 114, A3. https://doi.org/10.1029/2008JA013707

Hosokawa, K., Taguchi, S., & Ogawa, Y. (2016). Periodic creation of polar cap patches from auroral transients in the cusp. Journal of Geophysical Research: Space Physics, 121, 5639–5652. https://doi.org/10.1002/2015JA022221

Hosokawa, K., Zou, Y., & Nishimura, Y. (2019). Airglow patches in the polar cap region: a review. Space Science Reviews, 215, 53. https://

doi.org/10.1007/s11214-019-0616-8

Jin, Y., Moen, J. I., & Miloch, W. J. (2014). GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct

comparison. Journal of Space Weather and Space Climate, 4(27), A23. https://doi.org/10.1051/swsc/2014019

Ma, Y.-Z., Zhang, Q.-H., Xing, Z.-Y., Heelis, R. A., Oksavik, K., & Wang, Y. (2018). The ion/electron temperature characteristics of polar cap classical and hot patches and their influence on ion upflow. Geophysical Research Letters, 45, 8072–8080.

https://doi.org/10.1029/2018GL079099

9 of 10

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Journal of Geophysical Research: Space Physics

10.1029/2020JA028538

Milan, S. E., Lester, M., & Yeoman, T. K. (2002). HF radar polar patch formation revisited: summer and winter variations in dayside plasma

structuring. Annales Geophysicae, 20, 487.

Moen, J., Oksavik, K., Alfonsi, L., Daabakk, Y., Romano, V., & Spogli, L. (2013). Space weather challenges of the polar cap ionosphere.

Journal of Space Weather and Space Climate, 3(26), A02. https://doi.org/10.1051/swsc/2013025

Noja, M., Stolle, C., Park, J., & Lühr, H. (2013). Long-term analysis of ionospheric polar patches based on CHAMP TEC data. Radio Science,

48, 289–301. https://doi.org/10.1002/rds.20033

Ogawa, Y., Tanaka, Y., Kadokura, A., Hosokawa, K., Ebihara, Y., Motoba, T., et al. (2020). Development of low-cost multi-wavelength imager system for studies of aurora and airglows. Policy Sciences, 23, 100501. https://doi.org/10.1016/j.polar.2019.100501

Pedersen, T., Fejer, B., Doe, R., & Weber, E. (2000). An incoherent scatter radar technique for determining two-dimensional horizontal

ionization structure in polar cap F region patches. Journal of Geophysical Research, 105(10), 637.

Ruohoniemi, J. M., & Baker, K. B. (1998). Response of high latitude convection to a sudden southward IMF turning. Geophysical Research

Letters, 25, 2913.

Sojka, J. J., Bowline, M. D., & Schunk, R. W. (1994). Patches in the polar ionosphere: UT and seasonal dependence. Journal of Geophysical

Research, 99(A8), 14959–14970. https://doi.org/10.1029/93JA03327

Spicher, A., Clausen, L. B. N., Miloch, W. J., Lofstad, V., Jin, Y., & Moen, J. I. (2017). Interhemispheric study of polar cap patch occurrence

based on Swarm in situ data. Journal of Geophysical Research: Space Physics, 122, 3837–3851. https://doi.org/10.1002/2016JA023750

Weber, E. J., Buchau, J., Moore, J. G., Sharber, J. R., Livingston, R. C., Winningham, J. D., & Reinisch, B. W. (1984). F layer ionization patches in the polar caps. Journal of Geophysical Research, 89, 1683.

Zhang, Q.-H., Zhang, B.-C., Lockwood, M., Hu, H.-Q., Moen, J., Ruohoniemi, J. M., et al. (2013). Direct observations of the evolution of

polar cap ionization patches. Science, 339(6127), 1597–1600. https://doi.org/10.1126/science.1231487

Zhang, Q.-H., Ma, Y. Z., Jayachandran, P. T., Moen, J., Lockwood, M., Zhang, Y. L., et al. (2017). Polar cap hot patches: Enhanced density structures different from the classical patches in the ionosphere. Geophysical Research Letters, 44, 8159–8167. https://doi.

org/10.1002/2017GL073439

KAGAWA ET AL.

10 of 10

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る