リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Generation of equatorial plasma bubble after the 2022 Tonga volcanic eruption」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Generation of equatorial plasma bubble after the 2022 Tonga volcanic eruption

Shinbori, Atsuki Sori, Takuya Otsuka, Yuichi Nishioka, Michi Perwitasari, Septi Tsuda, Takuo Kumamoto, Atsushi Tsuchiya, Fuminori Matsuda, Shoya Kasahara, Yoshiya Matsuoka, Ayako Nakamura, Satoko Miyoshi, Yoshizumi Shinohara, Iku 京都大学 DOI:10.1038/s41598-023-33603-3

2023.05.22

概要

Equatorial plasma bubbles are a phenomenon of plasma density depletion with small-scale density irregularities, normally observed in the equatorial ionosphere. This phenomenon, which impacts satellite-based communications, was observed in the Asia-Pacific region after the largest-on-record January 15, 2022 eruption of the Tonga volcano. We used satellite and ground-based ionospheric observations to demonstrate that an air pressure wave triggered by the Tonga volcanic eruption could cause the emergence of an equatorial plasma bubble. The most prominent observation result shows a sudden increase of electron density and height of the ionosphere several ten minutes to hours before the initial arrival of the air pressure wave in the lower atmosphere. The propagation speed of ionospheric electron density variations was ~ 480–540 m/s, whose speed was higher than that of a Lamb wave (~315 m/s) in the troposphere. The electron density variations started larger in the Northern Hemisphere than in the Southern Hemisphere. The fast response of the ionosphere could be caused by an instantaneous transmission of the electric field to the magnetic conjugate ionosphere along the magnetic field lines. After the ionospheric perturbations, electron density depletion appeared in the equatorial and low-latitude ionosphere and extended at least up to ±25° in geomagnetic latitude.

この論文で使われている画像

参考文献

1. Yonezawa, T. Theory of the formation of the ionosphere. Space Sci. Rev. 5, 3–56. https://​doi.​org/​10.​1007/​BF001​79214 (1966).

2. McClure, J. P., Hanson, W. B. & Hoffman, J. H. Plasma bubbles and irregularities in the equatorial ionosphere. J. Geophys. Res. 82,

2650–2656. https://​doi.​org/​10.​1029/​JA082​i019p​02650 (1977).

3. Tsunoda, R. T., Livingston, R. C., McClure, J. P. & Hanson, W. B. Equatorial plasma bubbles: Vertically elongated wedge from the

bottomside F layer. J. Geophys. Res. 87, 9171–9180. https://​doi.​org/​10.​1029/​JA087​iA11p​09171 (1982).

4. Abdu, M. A. Day-to-day and short-term variabilities in the equatorial plasma bubble/spread F irregularity seeding and development. Prog. Earth Planet Sci. 6, 11. https://​doi.​org/​10.​1186/​s40645-​019-​0258-1 (2019).

5. Bhattacharyya, A. Equatorial plasma bubbles: A review. Atmosphere 13, 1637. https://​doi.​org/​10.​3390/​atmos​13101​637 (2022).

6. Otsuka, Y., Shiokawa, K., Ogawa, T. & Wilkinson, P. Geomagnetic conjugate observations of equatorial airglow depletions. Geophys.

Res. Lett. 29, 43-1–43-4. https://​doi.​org/​10.​1029/​2002G​L0153​47 (2002).

7. Shiokawa, K., Otsuka, Y., Ogawa, T. & Wilkinson, P. Time evolution of high-altitude plasma bubbles imaged at geomagnetic

conjugate points. Ann. Geophys. 22, 3137–3143. https://​doi.​org/​10.​5194/​angeo-​22-​3137-​2004 (2004).

8. Shiokawa, K., Otsuka, Y., Lynn, K. J., Wilkinson, P. & Tsugawa, T. Airglow-imaging observation of plasma bubble disappearance

at geomagnetically conjugate points. Earth Planet Sp. 67, 43. https://​doi.​org/​10.​1186/​s40623-​015-​0202-6 (2015).

9. Barros, D. et al. Asymmetric development of equatorial plasma bubbles observed at geomagnetically conjugate points over the

Brazilian sector. J. Geophys. Res. 127, e2021JA030250. https://​doi.​org/​10.​1029/​2021J​A0302​50 (2022).

10. Sori, T., Otsuka, Y., Shinbori, A., Nishioka, M. & Perwitasari, S. Geomagnetic conjugacy of plasma bubbles extending to midlatitudes during a geomagnetic storm on March 1, 2013. Earth Planets Sp. 74, 120. https://​doi.​org/​10.​1186/​s40623-​022-​01682-7

(2022).

11. Kelley, M. C., Makela, J. J., de La Beaujardière, O. & Retterer, J. Convective ionospheric storms: A review. Rev. Geophys. 49, RG2003.

https://​doi.​org/​10.​1029/​2010R​G0003​40 (2011).

12. Schunk, R. W. & Sojka, J. J. Ionosphere-thermosphere space weather issues. J. Atmos. Terr. Phys. 58, 1527–1574. https://​doi.​org/​

10.​1016/​0021-​9169(96)​00029-3 (1996).

13. Denardini, C. M., Dasso, S. & Gonzalez-Esparzad, J. A. Review on space weather in Latin America. 3. Development of space weather

forecasting centers. Adv. Sp. Res. 58, 1960–1967. https://​doi.​org/​10.​1016/j.​asr.​2016.​03.​011 (2016).

14. Li, G. et al. Challenges to equatorial plasma bubble and ionospheric scintillation short-term forecasting and future aspects in East

and Southeast Asia. Surv. Geophys. 42, 201–238. https://​doi.​org/​10.​1007/​s10712-​020-​09613-5 (2021).

15. Astafyeva, E. Ionospheric detection of natural hazards. Rev. Geophys. 57, 1265–1288. https://​doi.​org/​10.​1029/​2019R​G0006​68

(2019).

16. Meng, X., Vergados, P., Komjathy, A. & Verkhoglyadova, O. Upper atmospheric responses to surface disturbances: An observational

perspective. Radio Sci. 54, 1076–1098. https://​doi.​org/​10.​1029/​2019R​S0068​58 (2019).

17. Dautermann, T., Calais, E. & Mattioli, G. S. Global positioning system detection and energy estimation of the ionospheric wave

caused by the 13 July 2003 explosion of the Soufrière Hills volcano Montserrat. J. Geophys. Res. 114, B02202. https://​doi.​org/​10.​

1029/​2008J​B0057​22 (2009).

18. Manta, F., Occhipinti, G., Hill, E., Perttu, A. & Taisne, B. Correlation between GNSS-TEC and eruption magnitude supports the

use of ionospheric sensing to complement volcanic hazard assessment. J. Geophys. Res. 126, e2020JB020726. https://​doi.​org/​10.​

1029/​2020J​B0207​26 (2021).

19. Heki, K. Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbances.

Geophys. Res. Lett. 33, L14303. https://​doi.​org/​10.​1029/​2006G​L0262​49 (2006).

20. Nakashima, Y. et al. Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the

ionospheric total electron contents and seismic signals. Earth Planet Sci. Lett. 434, 112–116. https://​doi.​org/​10.​1016/j.​epsl.​2015.​

11.​029 (2016).

21. Tsugawa, T. et al. Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast

of Tohoku Earthquake. Earth Planet Sp. 66, 875–879. https://​doi.​org/​10.​5047/​eps.​2011.​06.​035 (2011).

22. Nishioka, M., Tsugawa, T., Kubota, M. & Ishii, M. Concentric waves and short-period oscillations observed in the ionosphere after

the 2013 Moore EF5 tornado. Geophys. Res. Lett. 40, 5581–5586. https://​doi.​org/​10.​1002/​2013G​L0579​63 (2013).

23. Duncombe, J. The surprising reach of Tonga’s giant atmospheric waves. Eos https://​doi.​org/​10.​1029/​2022E​O2200​50 (2022).

24. Themens, D. R. et al. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys.

Res. Lett. 49, e2022GL098158. https://​doi.​org/​10.​1029/​2022G​L0981​58 (2022).

25. Zhang, S.-R. et al. 2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb waves. Front.

Astron. Sp. Sci. 9, 871275. https://​doi.​org/​10.​3389/​fspas.​2022.​871275 (2022).

26. Astafyeva, E. et al. The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophys. Res.

Lett. 49, e2022GL098827. https://​doi.​org/​10.​1029/​2022G​L0988​27 (2022).

27. Sun, W. et al. Unseasonal super ionospheric plasma bubble and scintillations seeded by the 2022 Tonga volcano eruption related

perturbations. J. Sp. Weather Space Clim. 12, 25. https://​doi.​org/​10.​1051/​swsc/​20220​24 (2022).

28. Aa, E. et al. Significant ionospheric hole and equatorial plasma bubbles after the 2022 Tonga volcano eruption. Sp. Weather 20,

e2022SW003101. https://​doi.​org/​10.​1029/​2022S​W0031​01 (2022).

29. Rajesh, P. K. et al. Extreme poleward expanding super plasma bubbles over Asia-Pacific region triggered by Tonga volcano eruption

during the recovery-phase of geomagnetic storm. Geophys. Res. Lett. 49, e2022GL099798. https://​doi.​org/​10.​1029/​2022G​L0997​98

(2022).

30. Rakesh, V. et al. Impact of the Hunga Tonga-Hunga Ha’apai volcanic eruption on the changes observed over the Indian nearequatorial ionosphere. Adv. Sp. Res. 70, 2480–2493. https://​doi.​org/​10.​1016/j.​asr.​2022.​07.​004 (2022).

31. Miyoshi, Y. et al. Geospace exploration project ERG. Earth Planets Sp. 70, 101. https://​doi.​org/​10.​1186/​s40623-​018-​0862-0 (2018).

32. Pi, X., Mannucci, A. J., Lindqwister, U. J. & Ho, C. M. Monitoring of global ionospheric irregularities using the worldwide GPS

network. Geophys. Res. Lett. 24, 2283–2286. https://​doi.​org/​10.​1029/​97GL0​2273 (1997).

33. Nishioka, M., Saito, A. & Tsugawa, T. Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver

networks. J. Geophys. Res. 113, A05301. https://​doi.​org/​10.​1029/​2007J​A0126​05 (2008).

34. Kumamoto, A. et al. High frequency analyzer (HFA) of plasma wave experiment (PWE) onboard the Arase spacecraft. Earth

Planets Sp. 70, 82. https://​doi.​org/​10.​1186/​s40623-​018-​0854-0 (2018).

35. Kasahara, Y. et al. The plasma wave experiment (PWE) on board the Arase (ERG) satellite. Earth Planets Sp. 70, 86. https://​doi.​

org/​10.​1186/​s40623-​018-​0842-4 (2018).

36. Takenaka, H., Sakashita, T., Higuchi, A. & Nakajima, T. Development of geolocation correction for geostationary satellite observation by phase only correlation method using visible channel. Remote Sens. 12, 2472. https://​doi.​org/​10.​3390/​rs121​52472 (2020).

37. Yamamoto, Y., Ichii, K., Higuchi, A. & Takenaka, H. Geolocation accuracy assessment of Himawari-8/AHI imagery for application

to terrestrial monitoring. Remote Sens. 12, 1372. https://​doi.​org/​10.​3390/​rs120​91372 (2020).

38. Buhari, S. M. et al. Climatology of successive equatorial plasma bubbles observed by GPS ROTI over Malaysia. J. Geophys. Res.

122, 2174–2184. https://​doi.​org/​10.​1002/​2016J​A0232​02 (2017).

39. Hussien, F., Ghamry, E. & Fathy, A. A statistical analysis of plasma bubbles observed by Swarm constellation during different types

of geomagnetic storms. Universe 7, 90. https://​doi.​org/​10.​3390/​unive​rse70​40090 (2021).

Scientific Reports |

(2023) 13:6450 |

https://doi.org/10.1038/s41598-023-33603-3

11

Vol.:(0123456789)

www.nature.com/scientificreports/

40. Tsunoda, R. Upwelling: A unit of disturbance in equatorial spread, F. Prog. Earth Planet. Sci. 2, 9. https://​doi.​org/​10.​1186/​s40645-​

015-​0038-5 (2015).

41. Huba, J. D., Becker, E. & Vadas, S. L. Simulation study of the 15 January 2022 Tonga event: Development of super equatorial plasma

bubbles. Geophys. Res. Lett. 50, e2022GL101185. https://​doi.​org/​10.​1029/​2022G​L1011​85 (2023).

42. Burke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E. & Su, S. Y. Longitudinal variability of equatorial plasma bubbles observed

by DMSP and ROCSAT-1. J Geophys. Res. 109, A12301. https://​doi.​org/​10.​1029/​2004J​A0105​83 (2004).

43. Burke, W. J., Huang, C. Y., Gentile, L. C. & Bauer, L. Seasonal-longitudinal variability of equatorial plasma bubbles. Ann. Geophys.

22, 3089–3098. https://​doi.​org/​10.​5194/​angeo-​22-​3089-​2004 (2004).

44. Kepkar, A. et al. Occurrence climatology of equatorial plasma bubbles derived using FormoSat-3/COSMIC GPS radio occultation

data. Ann. Geophys. 38, 611–623. https://​doi.​org/​10.​5194/​angeo-​38-​611-​2020 (2020).

45. Magdaleno, S., Herraiz, M., Altadill, D. & De La Morena, B. A. Climatology characterization of equatorial plasma bubbles using

GPS data. J. Sp. Weather Sp. Clim. 7, A3. https://​doi.​org/​10.​1051/​swsc/​20160​39 (2017).

46. Heki, K. Ionospheric signatures of repeated passages of atmospheric waves by the 2022 Jan. 15 Hunga Tonga-Hunga Ha’apai eruption detected by QZSS-TEC observations in Japan. Earth Planets Sp. 74, 112. https://​doi.​org/​10.​1186/​s40623-​022-​01674-7 (2022).

47. Lin, J.-T. et al. Rapid conjugate appearance of the giant ionospheric lamb wave signatures in the Northern Hemisphere after HungaTonga volcano eruptions. Geophys. Res. Lett. 49, e2022GL098222. https://​doi.​org/​10.​1029/​2022G​L0982​22 (2022).

48. Saito, S. Ionospheric disturbances observed over Japan following the eruption of Hunga Tonga-Hunga Ha’apai on 15 January 2022.

Earth Planet Space 74, 57. https://​doi.​org/​10.​1186/​s40623-​022-​01619-0 (2022).

49. Shinbori, A. et al. Electromagnetic conjugacy of ionospheric disturbances after the 2022 Hunga Tonga-Hunga Ha’apai volcanic

eruption as seen in GNSS-TEC and SuperDARN Hokkaido pair of radars observations. Earth Planets Space 74, 106. https://​doi.​

org/​10.​1186/​s40623-​022-​01665-8 (2022).

50. Zhang, J. et al. Oscillations of the ionosphere caused by the 2022 Tonga volcanic eruption observed with SuperDARN radars.

Geophys. Res. Lett. 49, e2022GL100555. https://​doi.​org/​10.​1029/​2022G​L1005​55 (2022).

51. Matoza, R. S. et al. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science

377, 95–100. https://​doi.​org/​10.​1126/​scien​ce.​abo70​63 (2022).

52. Kubota, T., Saito, T. & Nishida, K. Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption.

Science 377, 91–94. https://​doi.​org/​10.​1126/​scien​ce.​abo43​64 (2022).

53. Matsuoka, A. et al. The ARASE (ERG) magnetic field investigation. Earth Planets Space 70, 43. https://​doi.​org/​10.​1186/​s40623-​

018-​0800-1 (2018).

54. Miyoshi, Y. et al. The ERG science center. Earth Planets Space 70, 96. https://​doi.​org/​10.​1186/​s40623-​018-​0867-8 (2018).

55. Sori, T., Shinbori, A., Otsuka, Y., Tsugawa, T. & Nishioka, M. Characteristics of GNSS total electron content enhancements over

the midlaitudes during a geomagnetic storm on 7 and 8 November 2004. J. Geophys. Res. https://​doi.​org/​10.​1029/​2019J​A0267​13

(2020).

56. Shinbori, A., Otsuka, Y., Sori, T., Tsugawa, T. & Nishioka, M. Temporal and spatial variations of total electron content enhancements during a geomagnetic storm on 27 and 28 September 2017. J. Geophys. Res. 125, e2019JA026873. https://​doi.​org/​10.​1029/​

2019J​A0268​73 (2020).

57. Shinbori, A. et al. Relationship between the locations of the midlatitude trough and plasmapause using GNSS-TEC and Arase

satellite observation data. J. Geophys. Res. 126, e2020JA028943. https://​doi.​org/​10.​1029/​2020J​A0289​43 (2021).

58. Sori, T., Shinbori, A., Otsuka, Y., Tsugawa, T. & Nishioka, M. The occurrence feature of plasma bubbles in the equatorial to midlatitude ionosphere during geomagnetic storms using long-term GNSS-TEC data. J. Geophys. Res. 126, e2020JA029010. https://​

doi.​org/​10.​1029/​2020J​A0290​10 (2021).

59. Otsuka, Y. et al. A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space 54, 63–70.

https://​doi.​org/​10.​1186/​BF033​52422 (2002).

60. Saito, A., Fukao, S. & Miyazaki, S. High resolution mapping of TEC perturbations with the GSI GPS network over Japan. Geophys.

Res. Lett. 25, 3079–3082. https://​doi.​org/​10.​1029/​98GL5​2361 (1998).

61. Pignalberi, A., Pietrella, M., Pezzopane, M., Nava, B. & Cesaroni, C. The ionospheric equivalent slab thickness: a review supported

by a global climatological study over two solar cycles. Space Sci. Rev. 218, 37. https://​doi.​org/​10.​1007/​s11214-​022-​00909-z (2022).

62. Angelopoulos, V. et al. The space physics environment data analysis system (SPEDAS). Space Sci. Rev. https://​doi.​org/​10.​1007/​

s11214-​018-​0576-4 (2019).

63. Hayashi, H. et al. Inter-university upper atmosphere global observation network (IUGONET). Data Sci. J. 12, WDS179–WDS184.

https://​doi.​org/​10.​2481/​dsj.​WDS-​030 (2013).

64. Yatagai, A. et al. Interuniversity upper atmosphere global observation network (IUGONET) metadata database and analysis

software. Data Sci. J. 13, PDA37–PDA43 (2014).

65. Abe, S. et al. Progress of the IUGONET system—Metadata database for upper atmosphere ground-based observation data. Earth

Planets Space 66, 133. https://​doi.​org/​10.​1186/​1880-​5981-​66-​133 (2014).

66. Tanaka, Y., Umemura, N., Abe, S., Shinbori, A. & UeNo, S. Advanced tools for guiding data-led research processes of upperatmospheric phenomena. Geosci. Data J. 00, 1–12. https://​doi.​org/​10.​1002/​gdj3.​170 (2022).

67. Tanaka, Y. et al. Analysis software for upper atmospheric data developed by the IUGONET project and its application to polar

science. Adv. Polar Sci. 24, 231–240. https://​doi.​org/​10.​3724/​SP.J.​1085.​2013.​00231 (2013).

68. Shiokawa, K. et al. Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at

subauroral latitudes as a part of the ERG-ground coordinated observation network. Earth Planets Space 69, 160. https://​doi.​org/​

10.​1186/​s40623-​017-​0745-9 (2018).

69. Picone, J. M., Hedin, A. E., Drob, D. P. & Aikin, A. C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons

and scientific issues. J. Geophys. Res. 107, 1468. https://​doi.​org/​10.​1029/​2002J​A0094​30 (2002).

70. Noll, C. The crustal dynamics data information system: A resource to support scientific analysis using space geodesy. Adv. Space

Res. 45, 1421–1440. https://​doi.​org/​10.​1016/j.​asr.​2010.​01.​018 (2010).

71. Jayachandran, P. T. et al. The Canadian high arctic ionospheric network (CHAIN). Radio Sci. 44, RS0A03. https://​doi.​org/​10.​1029/​

2008R​S0040​46 (2009).

72. Pacific Northwest Geodetic Array (PANGA). GPS/GNSS Network and Geodesy Laboratory: Central Washington University, other/

seismic network. Int. Fed. Digit. Seismogr. Netw. https://​doi.​org/​10.​7914/​SN/​PW (1996).

73. RESIF. RESIF-RENAG French national Geodetic Network. RESIF Reseau Sismologique et geodesique Francais https://​doi.​org/​10.​

15778/​resif.​rg (2017).

74. INGV RING Working Group, Rete Integrata Nazionale GNSS (2016). https://​doi.​org/​10.​13127/​RING

75. NCEDC. Northern California earthquake data center. UC Berkeley seismological laboratory. Dataset https://​doi.​org/​10.​7932/​

NCEDC (2014).

76. Bruyninx, C., Legrand, J., Fabian, A. & Pottiaux, E. GNSS metadata and data validation in the EUREF permanent network. GPS

Solut. 23, 106. https://​doi.​org/​10.​1007/​s10291-​019-​0880-9 (2019).

77. Piñón, D. A. et al. The history, state, and future of the Argentine continuous satellite monitoring network and its contributions to

geodesy in Latin America. Seismol. Res. Lett. 89, 475–482. https://​doi.​org/​10.​1785/​02201​70162 (2018).

Scientific Reports |

Vol:.(1234567890)

(2023) 13:6450 |

https://doi.org/10.1038/s41598-023-33603-3

12

www.nature.com/scientificreports/

78. Kasahara, Y., Kumamoto, A., Tsuchiya, F., Matsuda, S., Shoji, M., Nakamura, S., Kitahara, M., Shinohara, I. and Miyoshi, Y. The

PWE/HFA instrument Level-2 spectrum data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite

(2018). https://​doi.​org/​10.​34515/​DATA.​ERG-​10000.

79. Kasahara, Y., Kumamoto, A., Tsuchiya, F., Kojima, H., Matsuda, S., Matsuoka, A., Teramoto, M., Shoji, M. Nakamura, S., Kitahara,

M., Maeda, A., Miyoshi, Y. and Shinohara, I. The PWE/HFA instrument Level-3 electron density data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite (2021). https://​doi.​org/​10.​34515/​DATA.​ERG-​10001.

80. Matsuoka, A., Teramoto, M., Imajo, S., Kurita, S., Miyoshi, Y. and Shinohara, I. The MGF instrument Level-2 high-resolution

magnetic field data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite (2018). https://​doi.​org/​10.​

34515/​DATA.​ERG-​06000

81. Miyoshi, Y., Shinohara, I. & Jun, C.-W. The Level-2 orbit data of Exploration of energization and Radiation in Geospace (ERG)

Arase satellite. ERG Sci. Cent. https://​doi.​org/​10.​34515/​DATA.​ERG-​12000 (2018).

82. Miyoshi, Y., Shinohara, I. & Jun, C.-W. The Level-3 orbit data of Exploration of energization and Radiation in Geospace (ERG)

Arase satellite. ERG Sci. Cent. https://​doi.​org/​10.​34515/​DATA.​ERG-​12001 (2018).

Acknowledgements

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant no. 15H05815,

16H06286, 16H05736 20H00197, 20H01959, 20K14546, JP21H01144, JSPS Bilateral Joint Research Projects no.

JPJSBP120226504, and JSPS Core-to-Core Program, B. Asia-Africa Science Platforms. We used the Inter-university Upper atmosphere Observation NETwork (IUGONET) database (IUGONET Type-A) and data analysis

software. The GNSS data collection and processing were performed using the National Institute of Information

and Communications Technology Science Cloud. Himawari-8 gridded data are distributed by the Center for

Environmental Remote Sensing, Chiba University, Japan. Science data of the Exploration of energization and

Radiation in Geospace (ERG) (Arase) satellite were obtained from the ERG Science Center operated by Institute

of Space and Astronautical Science, Japan Aerospace Exploration Agency and Institute for Space-Earth Environmental Research, Nagoya University (https://​ergsc.​isee.​nagoya-​u.​ac.​jp/​index.​shtml.​en).

Author contributions

A.S. conceived and designed the study, analyzed the data, and wrote the initial draft. Y.O., M.N. and S.P. gathered

worldwide GNSS data and developed the method to derive GNSS-TEC and ROTI data used in this study together

with A.S. and T.S., Y.O., S.N. and Y.M. oversaw the production of the data sets and discussed their interpretations.

T.T. developed the procedure to analyze TIR grid data from the Himawara-8 satellite and discussed the results.

I.S. and Y.M. oversaw the ERG project and discussed the interpretation of the event. Y.K. led the development

and operation of PWE with the contribution of S.M., A.K. and F.T. S.M. contributed to the processing of the PWE

data. A.M. led the development and operation of MGF. All authors reviewed the manuscript.

Funding

The funding was provided JSPS KAKENHI Grant 15H05815, JSPS KAKENHI Grant 16H06286, JSPS KAKENHI

Grant 16H05736, JSPS KAKENHI Grant 20H00197, JSPS KAKENHI Grant 20H01959, JSPS KAKENHI Grant

20K14546, JSPS KAKENHI Grant 21H01144.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​023-​33603-3.

Correspondence and requests for materials should be addressed to A.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

Scientific Reports |

(2023) 13:6450 |

https://doi.org/10.1038/s41598-023-33603-3

13

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る