リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Exogenous parathyroid hormone attenuates ovariectomy-induced skeletal muscle weakness in vivo.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Exogenous parathyroid hormone attenuates ovariectomy-induced skeletal muscle weakness in vivo.

藤巻 太郎 山梨大学 DOI:info:doi/10.34429/00005167

2022.03.18

概要

(目的)
超高齢社会により筋量・骨量の低下が誘因となる転倒や骨折の頻度は増加し、これにより引き起こされる健康寿命低下の予防が社会的喫緊の課題である。
テリパラチドはヒト副甲状腺ホルモン( PTH) 1–34製剤であり、骨粗鬆症の治療で広く使用されている。また、閉経後骨粗鬆症モデルである卵巣摘出( OVX)マウスの骨量喪失はPTHにより改善されることが報告されている。この骨形成作用は骨芽細胞のWnt /β-カテニン経路を抑制するスクレロスチンを阻害することにより作用する。しかしながら、PTHの筋肉量と力の維持の機能とメカニズムは未だ不明な点が多い。本研究では、OVXマウスを使用した骨格筋の萎縮および機能障害に対するPTHの影響を調査し、新たな治療法の開発の一歩とすることを目的とした。

(方法)
8週齢の雌C57BL/6Jマウスの卵巣を麻酔下に切除し、OVXマウスを作成した。OVX、対照群である偽手術群( Sham) にそれぞれPTH( 80μg/kg) もしくはPBSを週3回腹腔内投与した。投与開始から20週時点で、運動能力( 握力、トレッドミルテスト、血中乳酸値) を測定し、深麻酔下に安楽死させ筋肉( 前脛骨筋)・骨・子宮等のサンプルを採取し組織学的・分子生物学的に解析した。
In vitroでは、筋芽細胞であるC2C12のPTH受容体の発現をWBで確認した。薬剤( MDI)刺激による脂肪分化モデルを使用し、PTHの脂肪化に対する抑制効果を分化マーカーのPCR、WBにより評価し、組織学的評価も行った。また、PTHの筋脂肪化抑制効果が、Wnt/β-catenin阻害剤( XAV)、Wnt siRNAにより妨げられるかも検討した。

(結果)
20 週後の椎体骨は、OVX 群と比較して OVX + PTH 群で卵巣摘出による骨量減少が有意に抑制された。運動能力においては、PTH 投与は卵巣摘出によって誘発される運動能力低下と血中乳酸値上昇率が軽減した。前脛骨筋では、PTH は卵巣摘出によって誘発される筋肉の酸化線維率と筋線維径(CSA)の低下を抑制させ、さらに卵巣摘出による筋細胞内脂質含有量の増加を減少させた。
In vitroにおいてPTHはC2C12細胞増殖、遊走能を増強し、MDI脂肪分化誘導培地で培養された脂肪滴分泌を減少させた。さらに、PTHはC2C12細胞において筋分化を促進させることが示された。PTH投与がC2C12細胞のβ-カテニン発現を増加させ、これはXAVにより抑制された。さらに、PTHにより誘発された細胞増殖能と遊走能は、XAV、siRNAにより無効化された。マウスモデルでは、OVXの前脛骨筋内のβ-カテニン発現が減少し、PTH投与によって改善した。

(考察)
OVX群は運動パフォーマンスの低下を示し、PTH投与により握力、走行可能最高速度の低下を有意に改善し、血中乳酸値上昇を弱めた。乳酸はMCT4によって細胞外に排出され、MCT1を介して細胞外乳酸が取り込まれATPが生成される。筋肉内のMCT1/MCT4含有量が運動後の乳酸値と相関していることが報告されており、我々の結果ではOVXマウスへのPTH投与がMCTを増加させ、運動後の乳酸血中濃度を低下させたと推測される。
NADH-TR反応はミトコンドリアの分布と密度の指標であり、酸化(タイプIIA、IID / X)と解糖系( タイプIIB) の骨格筋線維を区別するために使用される。PTH投与がOVXマウスに観察された酸化線維割合の低下を軽減した。これはPTHがエネルギー代謝と酸化線維割合を改善することにより運動機能改善に寄与することが示唆される。
筋内脂肪含有量と運動機能は逆相関することが知られており、本研究でも、PTH投与により酸化と解糖系ともに卵巣摘出により誘発された筋内脂質含有量が減少した。In vitroでは PTHが細胞増殖と遊走を促進し、脂質分泌量を減少させた。このことは、OVXマウスモデルでのPTH処理の結果と概ね一致していると考えられる。
OVX後のβ-カテニン発現低下はPTH投与により回復し、In vitroにおける細胞増殖、遊走能のPTHによる増強はWnt /β-カテニン阻害剤またはWnt siRNAにより無効化された。これらの結果は、Wnt /β-カテニンシグナル伝達が、骨格筋における細胞増殖、遊走、分化、および脂質分泌の調節に重要な役割を果たすことを示唆している。

(結論)
筋肉の機能障害の予防と筋細胞内脂質含有量の抑制におけるPTHの極めて重要な役割を示した。PTH受容体はマウス筋肉組織と筋芽細胞株に発現し、OVXマウスへのPTH投与は筋力低下を大幅に改善し、運動による乳酸値上昇が抑制された。筋肉内のPTH / Wntシグナルは、細胞増殖、細胞遊走、筋分化、および脂質分泌を調節していることが示された。したがって、 PTHは筋肉機能を調節する新しい因子である可能性がある。PTHはすでに骨粗鬆症治療に広く使用されており既存薬再開発として期待される。高齢者/筋力低下患者へのPTHの投与が、筋萎縮、機能障害の治療のための有望で新しい戦略であると言える。

この論文で使われている画像

参考文献

[1] C. Centers for Disease, Prevention, Trends in aging—United States and worldwide, MMWR Morb. Mortal. Wkly Rep. 52(6) (2003) 101–104, 106.

[2] T.P. van Staa, E.M. Dennison, H.G. Leufkens, C. Cooper, Epidemiology of fractures in England and Wales, Bone 29 (6) (2001) 517–522, https://doi.org/10.1016/ s8756-3282(01)00614-7.

[3] E. Hernlund, A. Svedbom, M. Ivergard, J. Compston, C. Cooper, J. Stenmark, E.V. McCloskey, B. Jonsson, J.A. Kanis, Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA), Arch. Osteoporos. 8 (2013) 136. https://doi.org/10.1007/s11657-013-0136-1.

[4] A. Zengin, S.R. Pye, M.J. Cook, J.E. Adams, R. Rawer, F.C.W. Wu, T.W. O’Neill, K. A. Ward, Associations of muscle force, power, cross-sectional muscle area and bone geometry in older UK men, J. Cachexia. Sarcopenia Muscle 8 (4) (2017) 598–606, https://doi.org/10.1002/jcsm.12198.

[5] N. Yoshimura, S. Muraki, H. Oka, T. Iidaka, R. Kodama, H. Kawaguchi, K. Nakamura, S. Tanaka, T. Akune, Is osteoporosis a predictor for future sarcopenia or vice versa? Four-year observations between the second and third ROAD study surveys, Osteoporos. Int. 28 (1) (2017) 189–199, https://doi.org/10.1007/s00198-016-3823-0.

[6] M. Tieland, I. Trouwborst, B.C. Clark, Skeletal muscle performance and ageing, J. Cachexia. Sarcopenia Muscle 9 (1) (2018) 3–19, https://doi.org/10.1002/ jcsm.12238.

[7] T.K. Omsland, N. Emaus, G.S. Tell, J.H. Magnus, L.A. Ahmed, K. Holvik, J. Center, S. Forsmo, C.G. Gjesdal, B. Schei, P. Vestergaard, J.A. Eisman, J.A. Falch, A. Tverdal, A.J. Sogaard, H.E. Meyer, Mortality following the first hip fracture in Norwegian women and men (1999-2008). A NOREPOS study, Bone 63 (2014) 81–86, https://doi.org/10.1016/j.bone.2014.02.016.

[8] C. Lipina, H.S. Hundal, Lipid modulation of skeletal muscle mass and function, J. Cachexia. Sarcopenia Muscle 8 (2) (2017) 190–201, https://doi.org/10.1002/ jcsm.12144.

[9] R.L. Marcus, O. Addison, J.P. Kidde, L.E. Dibble, P.C. Lastayo, Skeletal muscle fat infiltration: impact of age, inactivity, and exercise, J. Nutr. Health Aging 14 (5) (2010) 362–366, https://doi.org/10.1007/s12603-010-0081-2.

[10] F.G. De Carvalho, J.N. Justice, E.C. Freitas, E.E. Kershaw, L.M. Sparks, Adipose tissue quality in aging: how structural and functional aspects of adipose tissue impact skeletal muscle quality, Nutrients 11 (11) (2019) 2553, https://doi.org/ 10.3390/nu11112553.

[11] Y. Nakagawa, M. Hattori, K. Harada, R. Shirase, M. Bando, G. Okano, Age-related changes in intramyocellular lipid in humans by in vivo 1H-MR spectroscopy, Gerontology 53 (4) (2007) 218–223, https://doi.org/10.1159/000100869.

[12] D. Gallagher, P. Kuznia, S. Heshka, J. Albu, S.B. Heymsfield, B. Goodpaster, M. Visser, T.B. Harris, Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue, Am. J. Clin. Nutr. 81 (4) (2005) 903–910, https://doi.org/ 10.1093/ajcn/81.4.903.

[13] J.A. Batsis, Obesity in the older adult: special issue, J. Nutr. Gerontol. Geriatr. 38 (1) (2019) 1–5, https://doi.org/10.1080/21551197.2018.1564197.

[14] P. Babaei, A. Dastras, B.S. Tehrani, S. Pourali Roudbaneh, The effect of estrogen replacement therapy on visceral fat, serum glucose, lipid profiles and apelin level in ovariectomized rats, J. Menopausal. Med. 23 (3) (2017) 182–189, https://doi. org/10.6118/jmm.2017.23.3.182.

[15] A. Pighon, A. Paquette, R. Barsalani, N.A. Chapados, S. Yasari, E. Doucet, J. M. Lavoie, Substituting food restriction by resistance training prevents liver and body fat regain in ovariectomized rats, Climacteric 12 (2) (2009) 153–164, https:// doi.org/10.1080/13697130802447074.

[16] Y. Kitajima, Y. Ono, Estrogens maintain skeletal muscle and satellite cell functions, J. Endocrinol. 229 (3) (2016) 267–275, https://doi.org/10.1530/JOE-15-0476.

[17] J. Reeve, P.J. Meunier, J.A. Parsons, M. Bernat, O.L. Bijvoet, P. Courpron, C. Edouard, L. Klenerman, R.M. Neer, J.C. Renier, D. Slovik, F.J. Vismans, J. T. Potts Jr., Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial, Br. Med. J. 280 (6228) (1980) 1340–1344, https://doi.org/10.1136/bmj.280.6228.1340.

[18] R.M. Neer, C.D. Arnaud, J.R. Zanchetta, R. Prince, G.A. Gaich, J.Y. Reginster, A. B. Hodsman, E.F. Eriksen, S. Ish-Shalom, H.K. Genant, O. Wang, B.H. Mitlak, Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis, N. Engl. J. Med. 344 (19) (2001) 1434–1441, https://doi.org/10.1056/NEJM200105103441904.

[19] A.B. Hodsman, D.C. Bauer, D.W. Dempster, L. Dian, D.A. Hanley, S.T. Harris, D. L. Kendler, M.R. McClung, P.D. Miller, W.P. Olszynski, E. Orwoll, C.K. Yuen, Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use, Endocr. Rev. 26 (5) (2005) 688–703, https://doi.org/10.1210/er.2004-0006.

[20] T. Nakamura, T. Sugimoto, T. Nakano, H. Kishimoto, M. Ito, M. Fukunaga, H. Hagino, T. Sone, H. Yoshikawa, Y. Nishizawa, T. Fujita, M. Shiraki, Randomized teriparatide [human parathyroid hormone (PTH) 1-34] once-weekly efficacy research (TOWER) trial for examining the reduction in new vertebral fractures in subjects with primary osteoporosis and high fracture risk, J. Clin. Endocrinol. Metab. 97 (9) (2012) 3097–3106, https://doi.org/10.1210/jc.2011-3479.

[21] T. Sugimoto, T. Nakamura, Y. Nakamura, Y. Isogai, M. Shiraki, Profile of changes in bone turnover markers during once-weekly teriparatide administration for 24 weeks in postmenopausal women with osteoporosis, Osteoporos. Int. 25 (3) (2014) 1173–1180, https://doi.org/10.1007/s00198-013-2516-1.

[22] W. Most, L. Schot, A. Ederveen, L. van der Wee-Pals, S. Papapoulos, C. Lowik, In vitro and ex vivo evidence that estrogens suppress increased bone resorption induced by ovariectomy or PTH stimulation through an effect on osteoclastogenesis, J. Bone Miner. Res. 10 (10) (1995) 1523–1530, https://doi. org/10.1002/jbmr.5650101013.

[23] J.M. Alexander, I. Bab, S. Fish, R. Muller, T. Uchiyama, G. Gronowicz, M. Nahounou, Q. Zhao, D.W. White, M. Chorev, D. Gazit, M. Rosenblatt, Human parathyroid hormone 1-34 reverses bone loss in ovariectomized mice, J. Bone Miner. Res. 16 (9) (2001) 1665–1673, https://doi.org/10.1359/ jbmr.2001.16.9.1665.

[24] P.A. Urena-Torres, M. Vervloet, S. Mazzaferro, F. Oury, V. Brandenburg, J. Bover, E. Cavalier, M. Cohen-Solal, A. Covic, T.B. Drueke, E. Hindie, P. Evenepoel, J. Frazao, D. Goldsmith, J.J. Kazama, M. Cozzolino, Z.A. Massy, E.-E.C.-M.W. Group, Novel insights into parathyroid hormone: report of the parathyroid day in chronic kidney disease, Clin. Kidney J. 12(2) (2019) 269–280. https://doi.org/10.1093/c kj/sfy061.

[25] E.J. Duque, R.M. Elias, R.M.A. Moyses, Parathyroid hormone: a uremic toxin, Toxins (Basel) 12(3) (2020) 189. https://doi.org/10.3390/toxins12030189.

[26] M.T. Drake, B. Srinivasan, U.I. Modder, J.M. Peterson, L.K. McCready, B.L. Riggs, D. Dwyer, M. Stolina, P. Kostenuik, S. Khosla, Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women, J. Clin. Endocrinol. Metab. 95 (11) (2010) 5056–5062, https://doi.org/10.1210/jc.2010-0720.

[27] S.J. Meng, L.J. Yu, Oxidative stress, molecular inflammation and sarcopenia, Int. J. Mol. Sci. 11 (4) (2010) 1509–1526, https://doi.org/10.3390/ijms11041509.

[28] H. Cheng, T. Force, Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics, Circ. Res. 106 (1) (2010) 21–34, https://doi.org/10.1161/ CIRCRESAHA.109.206920.

[29] S. Fujimaki, R. Hidaka, M. Asashima, T. Takemasa, T. Kuwabara, Wnt protein- mediated satellite cell conversion in adult and aged mice following voluntary wheel running, J. Biol. Chem. 289 (11) (2014) 7399–7412, https://doi.org/ 10.1074/jbc.M113.539247.

[30] S. Kimura, K. Yoshioka, Parathyroid hormone and parathyroid hormone type-1 receptor accelerate myocyte differentiation, Sci. Rep. 4 (2014) 5066, https://doi. org/10.1038/srep05066.

[31] J. Xu, H. Rong, H. Ji, D. Wang, J. Wang, W. Zhang, Y. Zhang, Effects of different dosages of parathyroid hormone-related protein 1-34 on the bone metabolism of the ovariectomized rat model of osteoporosis, Calcif. Tissue Int. 93 (3) (2013) 276–287, https://doi.org/10.1007/s00223-013-9755-1.

[32] T. Omiya, J. Hirose, T. Hasegawa, N. Amizuka, Y. Omata, N. Izawa, H. Yasuda, Y. Kadono, M. Matsumoto, M. Nakamura, T. Miyamoto, S. Tanaka, The effect of switching from teriparatide to anti-RANKL antibody on cancellous and cortical bone in ovariectomized mice, Bone 107 (2018) 18–26, https://doi.org/10.1016/j. bone.2017.10.021.

[33] Y. Takayama, T. Ando, J. Ichikawa, H. Haro, Effect of thrombin-induced MCP-1 and MMP-3 production via PAR1 expression in murine intervertebral discs, Sci. Rep. 8 (1) (2018) 11320, https://doi.org/10.1038/s41598-018-29669-z.

[34] N. Sato, J. Ichikawa, M. Wako, T. Ohba, M. Saito, H. Sato, K. Koyama, T. Hagino, J. G. Schoenecker, T. Ando, H. Haro, Thrombin induced by the extrinsic pathway and PAR-1 regulated inflammation at the site of fracture repair, Bone 83 (2016) 23–34, https://doi.org/10.1016/j.bone.2015.10.005.

[35] I. Nishino, [ABC in muscle pathology], Rinsho Shinkeigaku 51(9) (2011) 669–676. https://doi.org/10.5692/clinicalneurol.51.669.

[36] T. Tokunaga, T. Ando, M. Suzuki-Karasaki, T. Ito, A. Onoe-Takahashi, T. Ochiai, M. Soma, Y. Suzuki-Karasaki, Plasma-stimulated medium kills TRAIL-resistant human malignant cells by promoting caspase-independent cell death via membrane potential and calcium dynamics modulation, Int. J. Oncol. 52 (3) (2018) 697–708, https://doi.org/10.3892/ijo.2018.4251.

[37] J.P. Smith, P.S. Hicks, L.R. Ortiz, M.J. Martinez, R.N. Mandler, Quantitative measurement of muscle strength in the mouse, J. Neurosci. Methods 62 (1–2) (1995) 15–19, https://doi.org/10.1016/0165-0270(95)00049-6.

[38] H. Takeshita, K. Yamamoto, S. Nozato, T. Inagaki, H. Tsuchimochi, M. Shirai, R. Yamamoto, Y. Imaizumi, K. Hongyo, S. Yokoyama, M. Takeda, R. Oguro, Y. Takami, N. Itoh, Y. Takeya, K. Sugimoto, S.I. Fukada, H. Rakugi, Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice, Sci. Rep. 7 (2017) 42323, https://doi.org/10.1038/ srep42323.

[39] S. Takahashi, K. Wakayoshi, A. Hayashi, Y. Sakaguchi, K. Kitagawa, A method for determining critical swimming velocity, Int. J. Sports Med. 30 (2) (2009) 119–123, https://doi.org/10.1055/s-2008-1039164.

[40] Y. Itoigawa, K.N. Kishimoto, H. Okuno, H. Sano, K. Kaneko, E. Itoi, Hypoxia induces adipogenic differentitation of myoblastic cell lines, Biochem. Biophys. Res. Commun. 399 (4) (2010) 721–726, https://doi.org/10.1016/j.bbrc.2010.08.007.

[41] M. Saito, J. Ichikawa, T. Ando, J.G. Schoenecker, T. Ohba, K. Koyama, K. Suzuki- Inoue, H. Haro, Platelet-derived TGF-beta induces tissue factor expression via the Smad3 pathway in osteosarcoma cells, J. Bone Miner. Res. 33 (11) (2018)2048–2058, https://doi.org/10.1002/jbmr.3537.

[42] R.S. Cruz, R.A. de Aguiar, T. Turnes, R. Penteado Dos Santos, M.F. de Oliveira, F. Caputo, Intracellular shuttle: the lactate aerobic metabolism, Sci. World J. 2012 (2012) 420984, https://doi.org/10.1100/2012/420984.

[43] C. Juel, A.P. Halestrap, Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter, J. Physiol. 517 (Pt 3) (1999) 633–642, https:// doi.org/10.1111/j.1469-7793.1999.0633s.x.

[44] L.H. Bergersen, Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle, Neuroscience 145 (1) (2007) 11–19, https://doi.org/10.1016/j.neuroscience.2006.11.062.

[45] B. Ravara, V. Gobbo, U. Carraro, L. Gelbmann, J. Pribyl, S. Schils, Functional electrical stimulation as a safe and effective treatment for equine epaxial muscle spasms: clinical evaluations and histochemical morphometry of mitochondria in muscle biopsies, Eur. J. Transl. Myol. 25 (2) (2015) 4910, https://doi.org/ 10.4081/ejtm.2015.4910.

[46] T. Suga, E. Kimura, Y. Morioka, M. Ikawa, S. Li, K. Uchino, Y. Uchida, S. Yamashita, Y. Maeda, J.S. Chamberlain, M. Uchino, Muscle fiber type-predominant promoter activity in lentiviral-mediated transgenic mouse, PLoS One 6 (3) (2011), e16908, https://doi.org/10.1371/journal.pone.0016908.

[47] M. Papageorgiou, T. Sathyapalan, R. Schutte, Muscle mass measures and incident osteoporosis in a large cohort of postmenopausal women, J. Cachexia. Sarcopenia Muscle 10 (1) (2019) 131–139, https://doi.org/10.1002/jcsm.12359.

[48] A. Palermo, A. Santonati, G. Tabacco, D. Bosco, A. Spada, C. Pedone, B. Raggiunti, T. Doris, D. Maggi, F. Grimaldi, S. Manfrini, F. Vescini, PTH(1-34) for surgical hypoparathyroidism: a 2-year prospective, open-label investigation of efficacy and quality of life, J. Clin. Endocrinol. Metab. 103 (1) (2018) 271–280, https://doi. org/10.1210/jc.2017-01555.

[49] J.A. Carson, S.C. Manolagas, Effects of sex steroids on bones and muscles: similarities, parallels, and putative interactions in health and disease, Bone 80 (2015) 67–78, https://doi.org/10.1016/j.bone.2015.04.015.

[50] Y.J. Kim, A. Tamadon, H.T. Park, H. Kim, S.Y. Ku, The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia, Osteoporos, Sarcopenia 2 (3) (2016) 140–155, https://doi.org/10.1016/j.afos.2016.06.002.

[51] M. Komrakova, D.B. Hoffmann, V. Nuehnen, H. Stueber, M. Wassmann, M. Wicke, M. Tezval, K.M. Stuermer, S. Sehmisch, The effect of vibration treatments combined with teriparatide or strontium ranelate on bone healing and muscle in ovariectomized rats, Calcif. Tissue Int. 99 (4) (2016) 408–422, https://doi.org/ 10.1007/s00223-016-0156-0.

[52] C. Sato, N. Miyakoshi, Y. Kasukawa, K. Nozaka, H. Tsuchie, I. Nagahata, Y. Yuasa, K. Abe, H. Saito, R. Shoji, Y. Shimada, Teriparatide and exercise improve bone, skeletal muscle, and fat parameters in ovariectomized and tail-suspended rats, J. Bone Miner. Metab. 39 (3) (2021) 385–395, https://doi.org/10.1007/s00774-020-01184-0.

[53] S.H. Yoon, M. Grynpas, J. Mitchell, Intermittent PTH treatment improves bone and muscle in glucocorticoid treated Mdx mice: a model of duchenne muscular dystrophy, Bone 121 (2019) 232–242, https://doi.org/10.1016/j. bone.2019.01.028.

[54] O.A. Deshpande, S.S. Mohiuddin, Biochemistry, Oxidative Phophorylation, StatPearls, Treasure Island (FL), 2020.

[55] K.J. McCullagh, A. Bonen, Reduced lactate transport in denervated rat skeletal muscle, Am. J. Phys. 268 (4 Pt 2) (1995) R884–R888, https://doi.org/10.1152/ ajpregu.1995.268.4.R884.

[56] A. Bonen, The expression of lactate transporters (MCT1 and MCT4) in heart and muscle, Eur. J. Appl. Physiol. 86 (1) (2001) 6–11, https://doi.org/10.1007/ s004210100516.

[57] K.J. McCullagh, C. Juel, M. O’Brien, A. Bonen, Chronic muscle stimulation increases lactate transport in rat skeletal muscle, Mol. Cell. Biochem. 156 (1) (1996) 51–57, https://doi.org/10.1007/BF00239319.

[58] H. Maciejewski, M. Bourdin, L. Feasson, H. Dubouchaud, C. Denis, H. Freund, L. A. Messonnier, Muscle MCT4 content is correlated with the lactate removal ability during recovery following all-out supramaximal exercise in highly-trained rowers, Front. Physiol. 7 (2016) 223, https://doi.org/10.3389/fphys.2016.00223.

[59] C. Thomas, P. Sirvent, S. Perrey, E. Raynaud, J. Mercier, Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humans, J. Appl. Physiol. (1985). 97(6) (2004) 2132–2138. https://doi.org/10.1152/japplphysiol.00387.2004.

[60] Y. Kanazawa, K. Ikegami, M. Sujino, S. Koinuma, M. Nagano, Y. Oi, T. Onishi, S. Sugiyo, I. Takeda, H. Kaji, Y. Shigeyoshi, Effects of aging on basement membrane of the soleus muscle during recovery following disuse atrophy in rats, Exp. Gerontol. 98 (2017) 153–161, https://doi.org/10.1016/j.exger.2017.08.014.

[61] R.K. Sayed, E.C. de Leonardis, J.A. Guerrero-Martinez, I. Rahim, D.M. Mokhtar, A. M. Saleh, K.E. Abdalla, M.J. Pozo, G. Escames, L.C. Lopez, D. Acuna-Castroviejo, Identification of morphological markers of sarcopenia at early stage of aging in skeletal muscle of mice, Exp. Gerontol. 83 (2016) 22–30, https://doi.org/10.1016/ j.exger.2016.07.007.

[62] J. Lexell, Human aging, muscle mass, and fiber type composition, J. Gerontol. A Biol. Sci. Med. Sci. 50 Spec. No. (1995) 11–16. https://doi.org/10.1093/gerona/5 0a.special_issue.11.

[63] Y. Kitajima, S. Ogawa, S. Egusa, Y. Ono, Soymilk improves muscle weakness in young ovariectomized female mice, Nutrients 9 (8) (2017) 834, https://doi.org/ 10.3390/nu9080834.

[64] A.S. Gorgey, G.A. Dudley, Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury, Spinal Cord 45 (4) (2007) 304–309, https:// doi.org/10.1038/sj.sc.3101968.

[65] A.S. Ryan, C.L. Dobrovolny, G.V. Smith, K.H. Silver, R.F. Macko, Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients, Arch. Phys. Med. Rehabil. 83 (12) (2002) 1703–1707, https://doi.org/10.1053/ apmr.2002.36399.

[66] T.M. Manini, B.C. Clark, M.A. Nalls, B.H. Goodpaster, L.L. Ploutz-Snyder, T. B. Harris, Reduced physical activity increases intermuscular adipose tissue in healthy young adults, Am. J. Clin. Nutr. 85 (2) (2007) 377–384, https://doi.org/ 10.1093/ajcn/85.2.377.

[67] R.D. Leite, J. Prestes, C.F. Bernardes, G.E. Shiguemoto, G.B. Pereira, J.O. Duarte, M.M. Domingos, V. Baldissera, S.E. de Andrade Perez, Effects of ovariectomy and resistance training on lipid content in skeletal muscle, liver, and heart; fat depots; and lipid profile, Appl. Physiol. Nutr. Metab. 34 (6) (2009) 1079–1086, https:// doi.org/10.1139/H09-116.

[68] D.M. Frechette, D. Krishnamoorthy, B.J. Adler, M.E. Chan, C.T. Rubin, Diminished satellite cells and elevated adipogenic gene expression in muscle as caused by ovariectomy are averted by low-magnitude mechanical signals, J. Appl. Physiol. (1985) 119(1) (2015) 27–36. https://doi.org/10.1152/japplphysiol.01020.2014.

[69] Y. Komiya, S. Sawano, D. Mashima, R. Ichitsubo, M. Nakamura, R. Tatsumi, Y. Ikeuchi, W. Mizunoya, Mouse soleus (slow) muscle shows greater intramyocellular lipid droplet accumulation than EDL (fast) muscle: fiber type- specific analysis, J. Muscle Res. Cell Motil. 38 (2) (2017) 163–173, https://doi.org/ 10.1007/s10974-017-9468-6.

[70] J. von Maltzahn, A.E. Jones, R.J. Parks, M.A. Rudnicki, Pax7 is critical for the normal function of satellite cells in adult skeletal muscle, Proc. Natl. Acad. Sci. U.S. A. 110 (41) (2013) 16474–16479, https://doi.org/10.1073/pnas.1307680110.

[71] B.C. Collins, R.W. Arpke, A.A. Larson, C.W. Baumann, N. Xie, C.A. Cabelka, N.L. Nash, H.K. Juppi, E.K. Laakkonen, S. Sipila, V. Kovanen, E.E. Spangenburg, M. Kyba, D.A. Lowe, Estrogen regulates the satellite cell compartment in females, Cell Rep. 28(2) (2019) 368–381 e6. https://doi.org/10.1016/j.celrep.2019.06.025.

[72] L.B. Verdijk, R. Koopman, G. Schaart, K. Meijer, H.H. Savelberg, L.J. van Loon, Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly, Am. J. Physiol. Endocrinol. Metab. 292 (1) (2007) E151–E157, https://doi. org/10.1152/ajpendo.00278.2006.

[73] L.B. Verdijk, M.L. Dirks, T. Snijders, J.J. Prompers, M. Beelen, R.A. Jonkers, D. H. Thijssen, M.T. Hopman, L.J. Van Loon, Reduced satellite cell numbers with spinal cord injury and aging in humans, Med. Sci. Sports Exerc. 44 (12) (2012) 2322–2330, https://doi.org/10.1249/MSS.0b013e3182667c2e.

[74] S. Kuang, M.A. Rudnicki, The emerging biology of satellite cells and their therapeutic potential, Trends Mol. Med. 14 (2) (2008) 82–91, https://doi.org/ 10.1016/j.molmed.2007.12.004.

[75] S.B. Charge, M.A. Rudnicki, Cellular and molecular regulation of muscle regeneration, Physiol. Rev. 84 (1) (2004) 209–238, https://doi.org/10.1152/ physrev.00019.2003.

[76] H. Sakakima, Y. Yoshida, S. Suzuki, N. Morimoto, The effects of aging and treadmill running on soleus and gastrocnemius muscle morphology in the senescence-accelerated mouse (SAMP1), J. Gerontol. A Biol. Sci. Med. Sci. 59 (10) (2004) 1015–1021, https://doi.org/10.1093/gerona/59.10.b1015.

[77] J. Lin, H. Wu, P.T. Tarr, C.Y. Zhang, Z. Wu, O. Boss, L.F. Michael, P. Puigserver, E. Isotani, E.N. Olson, B.B. Lowell, R. Bassel-Duby, B.M. Spiegelman, Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres, Nature 418 (6899) (2002) 797–801, https://doi.org/10.1038/ nature00904.

[78] S. Miura, Y. Kai, M. Ono, O. Ezaki, Overexpression of peroxisome proliferator- activated receptor gamma coactivator-1alpha down-regulates GLUT4 mRNA in skeletal muscles, J. Biol. Chem. 278 (33) (2003) 31385–31390, https://doi.org/ 10.1074/jbc.M304312200.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る