リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cerebral hemodynamic responses to the sensory conflict between visual and rotary stimulus: Analysis with a multichannel Near-Infrared Spectroscopy (NIRS) system.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cerebral hemodynamic responses to the sensory conflict between visual and rotary stimulus: Analysis with a multichannel Near-Infrared Spectroscopy (NIRS) system.

NGHIA Nguyen Trong 富山大学

2020.03.24

概要

Background.
The postural instability or vertiginous sensation was formed by the sensory conflict and it was originated from differences between the input information received by the visual and vestibular receptors. In humans, the cortical activations related to the visual or vestibular information processing have been investigated separately using functional MRI (fMRI). The results showed that the vestibular inputs elicited the activation of the regions related to visual flow processing including the medial superior temporal area (MST) and the ventral intra- parietal area (VIP), including temporoparietal junction (TPJ), posterior parietal cortex (PPC), somatosensory cortex and hippocampus. Because of movement restrictiveness for head rotation, fMRI is not suitable for the experiment of head rotatory (vestibular) stimulation. So, it is still unclear how these regions work during sensory conflict between visual and vestibular inputs in humans. To circumvent these limitations, we evaluate the cortical hemodynamic responses in the sensory conflict between visual and horizontal rotatory stimulation using functional near- infrared spectroscopy (fNIRS). It is the functional, non-invasive neuroimaging technique, suitable to analyze task-related cortical activity during motion. We would expect the changes in cortical activities in and around the TPJ including bilateral upper parts of the temporal lobe, the parietal lobe, posterior parts of the frontal lobe.

Methods.
There were 14 healthy men (aged 25.8±8.2 years, all right-handed) were enrolled in this study who had no medical history of ear disease, vertigo, and head injury. The visual-vestibular stimulator (OKN/VOR stimulator; First Medicals Co. Ltd, Tokyo, Japan) consisted of a rotatory chair, cylindrical screen and projector were used. We could control the speed of the rotatory chair and select the direction of horizontal movement of visual stimulation (black and white stripes) which were identical or opposite to that of rotatory chair. Two kinds of the rotatory direction of the chair ("Right to Left" or opposite) and two kinds of visual stimulations (“Congruent” and “Incongruent”) were combined. In “Right to Left” vestibular stimulation, the chair was accelerated to rotate to the right side in 3 degree/sec2 for 20 sec and then rotated in the same velocity for 80sec. After that, the chair was decelerated to rotate in 3 degree/sec2 for 20sec. Then, the rotatory chair accelerated to the opposite side in 3 degree/sec for 20 sec, rotated in a constant angular velocity (60 degree/sec) for 80 sec, decelerated in 3 degree/sec2 for 20 sec, and stopped for 80 sec. In “Congruent” visual stimulation, the strips were accelerated or decelerated in the opposite rotatory direction of the rotatory chair. In “Incongruent” visual stimulation, the stripes were accelerated or decelerated in the same rotatory direction of the rotatory chair. Four conditions were made from the combination of the direction of rotatory chair and visual stimulation (i.e. Condition 1:”Right” vestibular and “Congruent” visual stimulation; Condition 2:“Left” vestibular and “Congruent” visual stimulation; Condition 3:“Right” vestibular and “Incongruent” visual stimulation; Condition 4:“Left” vestibular and “Incongruent” visual stimulation). Self-assessment of the strength of vertiginous uncomfortable sensation during the acceleration phase was performed after each task (Visual Analog Scale: VAS).

Two portable fNIRS imaging systems (LIGHTNIRS; Shimadzu Co., Ltd, Kyoto, Japan) were used to measure cerebral hemodynamics and we recorded a total of 46 channels (“NIRS channel”). The recording areas were composed to the bilateral ventral part of supra parietal lobule (vSPL), infraparietal sulcus (IPS), supramarginal gyrus (SMG), anglar gyrus(AG), posterior supratemporal gyrus(pSTG), parietal operculum(p-OP), frontal operculum (f-Op), ventral part of pre- and postcentral gyrus (PrG and PoG), posterior middle temporal gyrus (pMTG) and ventral third visual association area (V3).

We analyzed changes in Oxy-Hb concentration as cerebral hemodynamic activity. The NIRS- statistical parametric mapping (SPM) software was used to perform the group statistical analysis of the activated cortical regions in each test condition. We also analyzed the correlation between hemodynamic activity and the strength of subjective vertiginous sensation (VAS score) in each condition.

Results.
Subjective vertiginous sensation: The result of the statistical analysis indicated that the strength of subjective vertiginous sensation in the incongruent condition was significantly larger than that in the congruent condition (P=0.032, paired t-test). Furthermore, both VAS scores in congruent and incongruent conditions have positively significant correlation (R=0.86342, Pearson correlation coefficient), suggesting that subjects had different sensitivity of vertigo for visual and vestibular stimulation.

Analyses of the NIRS data: As for the results of the group statistical analysis of NIRS Oxy- Hb, the topographical maps indicated significant activation in the left ventral primary somatosensory area (S1) and the right ventral part of SMG (vSMG) in Condition 1. Small part of the left vSMG was activated in condition 2. Bilateral vSMG, ventral part of AG and right pMTG were activated significantly in Condition 3. Bilateral vSMG, pSTG, pMTG, right AG were activated significantly in Condition4.

Correlation analysis between vertical activation and subjective vertiginous sensation: Negative correlation between T-value and subjective vertiginous sensation was shown in the results based on Spearman’s rank coefficient test. In dorsal part of left SMG, negative correlation was found in Condition 1 (p=0.0033) and Condition 3 (p=0.0033). In dorsal part of right SMG (p=0.0046) and left pSTG (p=0.0244), negative correlation was found in Condition 4. There was no significant correlation in condition 2.

Discussion and Conclusions.
Incongruent visual stimulation strongly enhanced hemodynamic activity in the posterior part of the MTG (pMTG). This area may be homologous to the middle temporal area (MT) and the medial superior temporal area (MST) in monkey. Dorsal MST neurons respond to both optic flow and translational movement. In addition, these neurons respond to rotation with incongruent visual and vestibular inputs. These results suggest that the pMTG activated in this study might be involved in detection of sensory conflict between visual and vestibular stimulation in human MST.

Bilateral ventral SMG (vSMG) and the posterior STG (pSTG) around the limb of the Sylvian fissure was activated in incongruent visual stimulation (Conditions 3 and 4). These areas correspond to the PIVC which receives multimodal information including vestibular, visual and proprioceptive inputs in monkey. In addition, the PIVC is strongly interconnected with other vestibular cortical areas. These results suggested that bilateral human TPJ activation in the present study might reflect altered perception of head position and movements in incongruent visual-vestibular conditions.

Negative correlation was found between the hemodynamic activity in bilateral dorsal part of the SMG (dSMG) in and around the infraparietal sulcus (IPS) and subjective vertiginous sensation in the incongruent visual stimulation (Condition 3 and 4). Greater activities in the dSMG induces weaker subjective vertiginous sensation during visual-vestibular sensory conflict. In monkeys, the ventral intraparietal area (VIP), located in the fundus of the IPS, receives multimodal information: (1) vestibular information from the PIVC, (2) vestibular and somatosensory information from the vestibular neck subregions in areas 3a and 2, (3) visual information from the MT and MST complex, and (4) somatosensory information from the S1 area. In addition, the monkey VIP neurons represented vestibular heading in an egocentric (body-centered) reference frame in a body-fixed gaze condition that corresponds to the present experimental situation, which might result in flexible transformation of the spatial reference frame to egocentric. The subjects, who could not flexibly switch reference frames during sensory conflict, might feel vertiginous sensation.

この論文で使われている画像

参考文献

Angelaki, D. E., Gu, Y., and Deangelis, G. C. (2011).Visual and vestibular cue integration for heading perception in extrastriate visual cortex. J. Physiol. 589, 825-33. doi: 10.1113/jphysiol.2010.194720

Ashburner J., and Friston, K. J. (1999). Nonlinear spatial normalization using basis functions. Hum. Brain Mapp. 7, 254–266. doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID- HBM4>3.0.CO;2-G

Ashburner, J., Neelin, P., Collins, D. L., Evans, A., and Friston, K. (1997). Incorporating prior knowledge into image registration. Neuroimage 6, 344–352. doi: 10.1006/nimg.1997.0299

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Method. 57, 289–300.

Bense, S., Stephan, T., Yousry, T. A., Brandt, T., and Dieterich, M. (2001). Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J. Neurophysiol. 85, 886–899. doi: 10.1152/jn.2001.85.2.886

Billington, J. and Smith, A. T. (2015). Neural mechanisms for discounting head-roll-induced retinal motion. J. Neurosci. 35, 4851-4856. doi: 10.1523/JNEUROSCI.3640-14.2015.

Blume, F., Hudak, J. and Dresler, T. (2017). NIRS-based neurofeedback training in a virtual reality classroom for children with attention-deficit/hyperactivity disorder: study protocol for a randomized controlled trial. Trials 18, 41. doi: 10.1186/s13063-016-1769-3

Bottini, G., Karnath, H. O., Vallar, G., Sterzi, R., Frith, C. D., Frackowiak, R. S., et al. (2001). Cerebral representations for egocentric space: Functional-anatomical evidence from caloric vestibular stimulation and neck vibration. Brain 124, 1182–1196. doi: 10.1093/brain/124.6.1182

Brandt, T. (1999). Vertigo: Its multisensory syndromes. 2nd ed. London: Springer.

Brandt, T., and Dieterich, M. (1999).The vestibular cortex. Its locations, functions, and disorders. Ann. N. Y. Acad. Sci. 871, 293–312. doi: 10.1111/j.1749-6632.1999.tb09193.x

Bucher, S. F., Dieterich, M., Wiesmann, M., Weiss, A., Zink, R., Yousry, T. A., et al. (1998). Cerebral functional magnetic resonance imaging of vestibular, auditory, and nociceptive areas during galvanic stimulation. Ann. Neurol. 44, 120–125. doi: 10.1002/ana.410440118

Bufalari, I., Di Russo, F., and Aglioti, S. M. (2014). Illusory and veridical mapping of tactile objects in the primary somatosensory and posterior parietal cortex. Cereb. Cortex. 24, 1867–1878. doi: 10.1093/cercor/bht037

Butler, J. S., Smith, S. T., Campos, J .L., and Bülthoff, H. H. (2010). Bayesian integration of visual and vestibular signals for heading. J. Vis. 10, 23. doi:10.1167/10.11.23

Bzdok, D., Langner, R., Schilbach, L., Jakobs, O., Roski, C., Caspers, S., et al. (2013). Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. Neuroimage 81, 381–392. doi: 10.1016/j.neuroimage.2013.05.046.

Chen, A., DeAngelis, G. C., and Angelaki, D. E. (2011). Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex. J. Neurosci. 31, 12036–12052. doi: 10.1523/JNEUROSCI.0395-11.2011

Chen, X., DeAngelis, G. C., and Angelaki, D. E. (2018). Flexible egocentric and allocentric representations of heading signals in parietal cortex. Proc. Natl. Acad. Sci. U. S. A. 115, 3305-3312. doi: 10.1073/pnas.1715625115

Cheng, Z. and Gu, Y. (2018). Vestibular system and self-motion. Front. Cell Neurosci. 12, 456. doi: 10.3389/fncel.2018.00456

Cheung, B., and Hofer, K. (2007). Tactile cueing vs. vestibular sensation and nystagmus during yaw rotation. Aviat. Space Environ. Med. 78, 756–763.

Colacino, J. M., Grubb, B., and Jöbsis, F. F. (1981). Infra-red technique for cerebral blood flow: comparison with 133Xenon clearance. Neurol. Res. 3, 17–31. doi: 10.1080/01616412.1981.11739590

Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz, C. H., et al. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am. J. Neuroradiol. 22, 1326–1333.

Deutschländer, A., Bense, S., Stephan, T., Schwaiger, M., Brandt, T., and Dieterich, M. (2002). Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Hum. Brain Mapp. 16, 92–103. doi: 10.1002/hbm.10030

Dieterich, M., Bense, S., Lutz, S., Drzezga, A., Stephan, T., Bartenstein, P., et al.(2003). Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb. Cortex 13, 994–1007. doi: 10.1093/cercor/13.9.994

Dieterich, M., and Brandt, T. (2008). Functional brain imaging of peripheral and central vestibular disorders. Brain 131, 2538–2552. doi: 10.1093/brain/awn042

Duffy, C. J. (1998). MST neurons respond to optic flow and translational movement. J. Neurophysiol. 80, 1816-27. doi: 10.1152/jn.1998.80.4.1816

Ehrsson, H. H., Spence, C., and Passingham, R. E. (2004). That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305, 875–877. doi: 10.1126/science.1097011

Eickhoff, S. B., Weiss, P. H., Amunts, K., Fink, G. R., and Zilles, K. (2006). Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum. Brain Mapp. 27, 611–621. doi: 10.1002/hbm.20205

Fasold, O., von Brevern, M., Kuhberg, M., Ploner, C. J., Villringer, A., Lempert, T., et al. (2002). Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. Neuroimage 17, 1384–1393. doi: 10.1006/nimg.2002.1241

Fetsch, C. R., Deangelis, G. C., and Angelaki, D. E. (2010). Visual-vestibular cue integration for heading perception: applications of optimal cue integration theory. Eur. J. Neurosci. 10, 1721-1729. doi: 10.1111/j.1460-9568.2010.07207.x

Frank, S. M., Baumann, O., Mattingley, J. B., and Greenlee, M. W. (2014). Vestibular and visual responses in human posterior insular cortex. J. Neurophysiol. 112, 2481–2491. doi: 10.1152/jn.00078.2014

Frank, S. M., and Greenlee, M. W. (2018). The parieto-insular vestibular cortex in humans: more than a single area? J. Neurophysiol. 120, 1438–1450, 2018. doi: 10.1152/jn.00907.2017

Frank, S. M., Wirth, A. M., and Greenlee, M. W. (2016). Visual-vestibular processing in the human sylvian fissure. J. Neurophysiol. 116, 263–271. doi: 10.1152/jn.00009.2016

Friston, K. J., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D., and Frackowiak, R. S. J. (1995). Spatial registration and normalization of images. Hum. Brain Mapp. 2, 165–189. doi: 10.1002/hbm.460030303

Gu, Y., Angelaki, D. E., and Deangelis, G. C. (2008). Neural correlates of multisensory cue integration in macaque MSTd. Nat. Neurosci. 11, 1201–1210. doi: 10.1038/nn.2191

Guldin, W. O., Akbarian, S., and Grüsser, O. J. (1992). Cortico-cortical connections and cytoarchitectonics of the primate vestibular cortex: a study in squirrel monkeys (Saimiri sciureus). J. Comp. Neurol. 326, 375–401. doi: 10.1002/cne.903260306

Hagura, N., Takei, T., Hirose, S., Aramaki, Y., Matsumura, M., Sadato, N., et al. (2007). Activity in the posterior parietal cortex mediates visual dominance over kinesthesia. J. Neurosci. 27, 7047–7053.

Horak, F. B. (2009). Postural compensation for vestibular loss. Ann. N. Y. Acad. Sci. 1164, 76–81. doi: 10.1111/j.1749-6632.2008.03708.x

Hoshi, Y., Kobayashi, N., and Tamura, M. (2001). Interpretation of near-infrared spectroscopy signal: a study with a newly developed perfused rat brain model. J. Appl. Physiol. 90, 1657– 1662. doi: 10.1152/jappl.2001.90.5.1657

Huk, A. C., Dougherty, R. F., and Heeger, D. J. (2002). Retinotopy and functional subdivision of human areas MT and MST. J Neurosci. 22, 7195–7205. doi: 10.1523/JNEUROSCI.22- 16-07195.2002

Ionta, S., Heydrich, L., Lenggenhager, B., Mouthon, M., Fornari, E., Chapuis, D., et al. (2011). Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron. 70, 363–374. doi: 10.1016/j.neuron.2011.03.009.

Ishikuro, K., Urakawa, S., Takamoto, K., Ishikawa, A., Ono, T., and Nishijo, H. (2014). Cerebral functional imaging using near-infrared spectroscopy during repeated performances of motor rehabilitation tasks tested on healthy subjects. Front. Hum. Neurosci. 8, 292. doi: 10.3389/fnhum.2014.00292

Jöbsis, F. F. (1997). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267.

Karim, H., Fuhrman, S. I., Sparto, P., Furman, J., and Huppert, T. (2013). Functional brain imaging of multi-sensory vestibular processing during computerized dynamic posturography using near-infrared spectroscopy. Neuroimage.74, 318–325. doi: 10.1016/j.neuroimage.2013.02.010

Keshavarz, B., Riecke, B. E., Hettinger, L. J., and Campos, J. L. (2015). Vection and visually induced motion sickness: how are they related? Front. Psychol. 6, 472. doi: 10.3389/fpsyg.2015.00472

Kimmig A.-C. S., Dresler T., Hudak J., Haeussinger F. B., Wildgruber D., Fallgatter A. J., et al. (2018). Feasibility of NIRS-based neurofeedback training in social anxiety disorder: behavioral and neural correlates. J. Neural Transm (Vienna). 126, 1175–1185. doi:10.1007/s00702-018-1954-5

Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131. doi:10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8

Lewis, J. W., and Van Essen, D. C. (2000). Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137. doi: 10.1002/1096-9861(20001204)428:1<112::aid-cne8>3.0.co;2-9

Lin, C. C., Barker, J. W., Sparto, P. J., Furman, J. M., and Huppert, T. J. (2017). Functional near-infrared spectroscopy (fNIRS) brain imaging of multi-sensory integration during computerized dynamic posturography in middle-aged and older adults. Exp. Brain Res. 235, 1247–1256. doi: 10.1007/s00221-017-4893-8

Lobel, E., Kleine, J. F., Bihan, D. L., Leroy-Willig, A., and Berthoz, A. (1998). Functional MRI of galvanic vestibular stimulation. J. Neurophysiol. 80, 2699–2709. doi: 10.1152/jn.1998.80.5.2699

Lopez, C., and Blanke, O. (2011). The thalamocortical vestibular system in animals and human. Brain Res. Rev. 67, 119–146. doi: 10.1016/j.brainresrev.2010.12.002

Lu, C. M., Zhang, Y. J., Biswal, B. B., Zang, Y. F., Peng, D. L., and Zhu, C. Z. (2010). Use of fNIRS to assess resting state functional connectivity. J. Neurosci. Methods 186, 242–249. doi: 10.1016/j.jneumeth.2009.11.010

Mihara, M., and Miyai, I. (2016). Review of functional near-infrared spectroscopy in neurorehabilitation. Neurophotonics 3, 031414. doi: 10.1117/1.NPh.3.3.031414

Mihara, M., Miyai, I., Hatakenaka, M., Kubota, K., and Sakoda, S. (2008). Role of the prefrontal cortex in human balance control. Neuroimage 43, 329–336. doi: 10.1016/j.neuroimage.2008.07.029

Nakamichi, N., Takamoto, K., Nishimaru, H., Fujiwara, K., Takamura, Y., Matsumoto, J., et al. (2018). Cerebral hemodynamics in speech-related cortical areas: articulation learning involves the inferior frontal gyrus, ventral sensory-motor cortex, and parietal-temporal sylvian area. Front. Neurol. 9, 939. doi: 10.3389/fneur.2018.00939

Niederer, P., Mudra, R., and Keller, E. (2008). Monte Carlo simulation of light propagation in adult brain: influence of tissue blood content and indocyanine green. Opto. Electron. Rev. 16, 124–30. doi: 10.2478/s11772-008-0012-5

Oess, T., Krichmar, J. L., and Röhrbein, F. A. (2017). Computational model for spatial navigation based on reference frames in the hippocampus, retrosplenial cortex, and posterior parietal cortex. Front. Neurorobot. 11, 4. doi: 10.3389/fnbot.2017.00004

Oman, C. M. (1982). A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta. Otolaryngol. Suppl. 392, 1–44.

Peterka, R. J., Statler, K. D., Wrisley, D. M., and Horak, F. B. (2011). Postural compensation for unilateral vestibular loss. Front. Neurol. 2, 57. doi: 10.3389/fneur.2011.00057

Petkova, V. I., Björnsdotter, M., Gentile, G., Jonsson, T., Li, T. Q., and Ehrsson, H. H. (2011). From part- to whole-body ownership in the multisensory brain. Curr. Biol. 21: 1118–1122. doi: 10.1016/j.cub.2011.05.022

Pfeiffer, C., Serino, A., and Blanke, O. (2014). The vestibular system: a spatial reference for bodily self-consciousness. Front. Integr. Neurosci. 8, 31. doi: 10.3389/fnint.2014.00031

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., et al. (2018). The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.13948

Reason, J. T. (1978). Motion sickness adaptation. A neural mismatch model. J. R. Soc. Med. 71, 819–829.

Roberts, R. E., Ahmad, H., Arshad, Q., Patel, M., Dima, D., Leech, R., et al. (2017). Functional neuroimaging of visuo-vestibular interaction. Brain Struct. Funct. 222, 2329–2343. doi: 10.1007/s00429-016-1344-4

Rühl, R. M., Bauermann, T., Dieterich, M. and Zu Eulenburg, P. (2018). Functional correlate and delineated connectivity pattern of human motion aftereffect responses substantiate a subjacent visual-vestibular interaction. Neuroimage 174, 22–34. doi: 10.1016/j.neuroimage.2018.02.057

Sato, H., Fuchino, Y., Kiguchi, M., Katura, T., Maki, A., Yoro, T., et al. (2005). Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation. J. Biomed. Opt. 10: 44001. doi: 10.1117/1.1960907

Sato, T., Nambu, I., Takeda, K., Aihara, T., Yamashita, O., Isogaya, T., et al. (2016). Reduction of global interference of scalp-hemodynamics in functional near-infrared spectroscopy using short distance probes. Neuroimage 141, 120–132. doi: 10.1016/j.neuroimage.2016.06.054

Schindler, A., and Bartels, A. (2018). Integration of visual and non-visual self-motion cues during voluntary head movements in the human brain. Neuroimage 172, 597–607. doi: 10.1016/j.neuroimage.2018.02.006

Schytz, H. W., Wienecke, T., Jensen, L. T., Selb, J., Boas, D. A., and Ashina, M. (2009). Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT. Eur. J. Neurol. 16, 461–67. doi: 10.1111/j.1468- 1331.2008.02398.x

Seiyama, A., Hazeki, O., and Tamura, M. (1988). Noninvasive quantitative analysis of blood oxygenation in rat skeletal muscle. J. Biochem. 103, 419–24. doi: 10.1093/oxfordjournals.jbchem.a122285

Smith, A. T., Greenlee, K. W., DeAngelis, G. C. and Angelaki, D. E. (2017). Distributed visual–vestibular processing in the cerebral cortex of man and macaque. Multisens. Res. 30, 91–120. doi:10.1163/22134808-00002568

Smith, A. T., Wall, M. B., and Thilo, K. V. (2012). Vestibular inputs to human motion- sensitive visual cortex. Cereb. Cortex 22, 1068–1077. doi: 10.1093/cercor/bhr179

Smith, P. F. (2017). The vestibular system and cognition. Curr Opin Neurol. 30, 84–89. doi: 10.1097/WCO.0000000000000403.

Strangman, G., Culver, J. P., Thompson, J. H., and Boas, D. A. (2002). A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17, 719–731. doi: 10.1006/nimg.2002.1227

Tachtsidis, I., and Scholkmann, F. (2016). False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward. Neurophotonics 3, 031405. doi: 10.1117/1.NPh.3.3.031405

Takahashi, K., Gu, Y., May, P. J., Newlands, S. D., DeAngelis, G. C., and Angelaki, D. E. (2007). Multimodal coding of three-dimensional rotation and translation in area MSTd: comparison of visual and vestibular selectivity. J Neurosci. 27, 9742–9756. doi: 10.1523/JNEUROSCI.0817-07.2007

Takakura, H., Nishijo, H., Ishikawa, A., and Shojaku, H. (2015). Cerebral hemodynamic responses during dynamic posturography: analysis with a multichannel near-infrared spectroscopy system. Front. Hum. Neurosci. 9, 620. doi: 10.3389/fnhum.2015.00620

Takakura, H., Shojaku, H., Takamoto, K., Urakawa, S., Nishijo, H., and Watanabe, Y. (2011). Cortical hemodynamic responses to intravenous thiamine propyldisulphide administration detected by multichannel near infrared spectroscopy (NIRS) system. Brain Topogr. 24, 114–126. doi: 10.1007/s10548-011-0179-9

Talairach, J., and Tournoux, P. (1988). Co-planar Stereotaxic Atlas of the Human Brain. Stuttgart, NY: Thieme.

Thomas, E., Martines, F., Bianco, A., Messina, G., Giustino. V., Zangla, D., et al. (2018). Decreased postural control in people with moderate hearing loss. Medicine (Baltimore) 97, e0244. doi: 10.1097/MD.0000000000010244

Toichi, M., Findling, R. L., Kubota, Y., Calabrese, J. R., Wiznitzer, M., McNamara, N. K., et al. (2004). Hemodynamic differences in the activation of the prefrontal cortex: attention vs. higher cognitive processing. Neuropsychologia 42, 698–706. doi: 10.1016/j.neuropsychologia.2003.08.012

Wray, S., Cope, M., Delpy, D. T., Wyatt, J. S., and Reynolds, E. O. (1988). Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non- invasive monitoring of cerebral oxygenation. Biochim. Biophys. Acta. 933, 184–192. doi: 10.1016/0005-2728(88)90069-2

Yamamoto, Y., and Kato, T. (2002). Paradoxical correlation between signal in functional magnetic resonance imaging and deoxygenated haemoglobin content in capillaries: a new theoretical explanation. Phys. Med. Biol. 47, 1121–1141. doi: 10.1088/0031- 9155/47/7/309

Ye, J. C., Tak, S., Jang, K. E., Jung, J., and Jang, J. (2009). NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage 44, 428–447. doi: 10.1016/j.neuroimage.2008.08.036

Zhang, X., Noah, J. A., Dravida, S., and Hirsch, J. (2017). Signal processing of functional NIRS data acquired during overt speaking. Neurophotonics 4, 041409. doi: 10.1117/1.NPh.4.4.041409

Zhang, X., Noah, J. A., and Hirsch, J. (2016). Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering. Neurophotonics 3, 015004. doi: 10.1117/1.NPh.3.1.015004

zu Eulenburg, P., Caspers, S., Roski, C., and Eickhoff, S. B. (2012). Meta-analytical definition and functional connectivity of the human vestibular cortex. Neuroimage 60, 162–169. doi: 10.1016/j.neuroimage.2011.12.032

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る