リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Functional manipulation of interhemispheric connections through brain-computer interfacing (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Functional manipulation of interhemispheric connections through brain-computer interfacing (本文)

林, 正彬 慶應義塾大学

2022.09.05

概要

Projection neurons connect the brain over long distances and create a network between different brain regions. In particular, both hemispheres are structurally and functionally connected by interhemispheric projections through the corpus callosum (Hofer and Frahm, 2006; Jarbo et al., 2012) (Figure 1-1). The functions of interhemispheric projections have informed the development of theories that deal with several aspects of the human condition, including hand preference (Witelson, 1985), creativity (Bogen and Bogen, 1988), and attentional functioning (Banich, 1998). In the motor domain, interhemispheric interaction is required to maintain appropriate motor control. Suring unimanual motor tasks, neurons in the monkey primary motor cortex (M1) fire bilaterally and motor signals from both hemispheres interact with each other (Ames and Churchland, 2019); in the human motor cortex, unilateral motor behaviors and bimanual motor coordination rely on the interactions between the contralateral and ipsilateral sensorimotor areas (Picazio et al., 2014; Stefanou et al., 2018).

 As a conduit for transferring information between the two hemispheres, interhemispheric inhibition (IHI) is fundamental for the interaction between bilateral M1 areas; IHI refers to the phenomenon in which the left and right M1 areas suppress each other (Carson, 2020; Ferbert et al., 1992). Since such IHI was reduced in patients with callosal infarction (Li et al., 2013), IHI has been considered to be predominantly mediated via the corpus callosum. IHI between the M1 areas may play an important role in suppressing the activity of the contralateral side, which contributes critically to motor control (Duque et al., 2007; Morishita et al., 2012).

参考文献

Adeyemo BO, Simis M, Macea DD, Fregni F. Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke. Front Psychiatry 3, 00088 (27 pages), 2012.

Alawieh A, Tomlinson S, Adkins D, Kautz S, Feng W. Preclinical and clinical evidence on ipsilateral corticospinal projections: Implication for motor recovery. Transl Stroke Res 8(6), 529–540, 2017.

Amatachaya A, Jensen MP, Patjanasoontorn N, Auvichayapat N, Suphakunpinyo C, Janjarasjitt S, Ngernyam N, Aree-uea B, Auvichayapat P. The Short-Term Effects of Transcranial Direct Current Stimulation on Electroencephalography in Children with Autism: A Randomized Crossover Controlled Trial. Behav Neurol 2015, 928631 (11 pages), 2015.

Ames KC, Churchland MM. Motor cortex signals for each arm are mixed across hemispheres and neurons yet partitioned within the population response. eLife 8, 46159 (36 pages), 2019.

Ang KK, Guan C. EEG-Based Strategies to Detect Motor Imagery for Control and Rehabilitation. IEEE Trans Neural Syst Rehabil Eng 25(4), 392–401, 2017.

Ang KK, Guan C, Chua KSG, Ang BT, Kuah CWK, Wang C, Phua KS, Chin ZY, Zhang H. A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain-computer interface. Clin EEG Neurosci 42(4), 253–258, 2011.

Ang KK, Guan C, Phua KS, Wang C, Zhao L, Teo WP, Chen C, Ng YS, Chew E. Facilitating effects of transcranial direct current stimulation on motor imagery brain- computer interface with robotic feedback for stroke rehabilitation. Arch Phys Med Rehabil 96(3, Supplement), S79–S87, 2015.

Arai N, Müller-Dahlhaus F, Murakami T, Bliem B, Lu M-K, Ugawa Y, Ziemann U. State- dependent and timing-dependent bidirectional associative plasticity in the human SMA-M1 network. J Neurosci 31(43), 15376–15383, 2011.

Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccala LA, Fallani F de V, Salinari S, Ursino M, Zavaglia M, Ding L, Edgar JC, Miller GA, He B, Babiloni F. Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Hum Brain Mapp 28(2), 143–157, 2007.

Auriat AM, Borich MR, Snow NJ, Wadden KP, Boyd LA. Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke. NeuroImage Clin 7(1), 771–781, 2015.

Bai Z, Fong KNK, Zhang JJ, Chan J, Ting KH. Immediate and long-term effects of BCI- based rehabilitation of the upper extremity after stroke: A systematic review and meta- analysis. J Neuroengineering Rehabil 17(57), 20, 2020.

Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol 8, 00456 (13 pages), 2017.

Banich MT. The missing link: The role of interhemispheric interaction in attentional processing. Brain Cogn 36(2), 128–157, 1998.

Bauer R, Fels M, Vukelić M, Ziemann U, Gharabaghi A. Bridging the gap between motor imagery and motor execution with a brain–robot interface. NeuroImage 108(1), 319– 327, 2015.

Birbaumer N, Cohen LG. Brain-computer interfaces: Communication and restoration of movement in paralysis. J Physiol 579(3), 621–636, 2007.

Boddington LJ, Reynolds JNJ. Targeting interhemispheric inhibition with neuromodulation to enhance stroke rehabilitation. Brain Stimulat 10(2), 214–222, 2017. Bogen JE, Bogen GM. Creativity and the corpus callosum. Psychiatr Clin North Am 11(3), 293–301, 1988.

Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N. Think to move: A neuromagnetic brain- computer interface (BCI) system for chronic stroke. Stroke 39(3), 910–917, 2008.

Bundy DT, Souders L, Baranyai K, Leonard L, Schalk, Coker R, Moran DW, Huskey T, Leuthardt EC. Contralesional brain–computer interface control of a powered exoskeleton for motor recovery in chronic stroke survivors. Stroke 48(7), 1908–1915, 2017.

Caria A, Weber C, Brötz D, Ramos A, Ticini LF, Gharabaghi A, Braun C, Birbaumer N. Chronic stroke recovery after combined BCI training and physiotherapy: A case report. Psychophysiology 48(4), 578–582, 2011.

Carson RG. Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Rev 49(3), 641–662, 2005.

Carson RG. Inter-hemispheric inhibition sculpts the output of neural circuits by co-opting the two cerebral hemispheres. J Physiol 598(21), 4781–4802, 2020.

Carter Leno V, Tomlinson SB, Chang S-AA, Naples AJ, McPartland JC. Resting-state alpha power is selectively associated with autistic traits reflecting behavioral rigidity. Sci Rep 8, 11982 (7 pages), 2018.

Cervera MA, Soekadar SR, Ushiba J, Millán JDR, Liu M, Birbaumer N, Garipelli G. Brain-computer interfaces for post-stroke motor rehabilitation: A meta-analysis. Ann Clin Transl Neurol 5(5), 651–663, 2018.

Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain–computer interfaces for communication and rehabilitation. Nat Rev Neurol 12(9), 513–525, 2016.

Chieffo R, Inuggi A, Straffi L, Coppi E, Gonzalez-Rosa J, Spagnolo F, Poggi A, Comi G, Comola M, Leocani L. Mapping early changes of cortical motor output after subcortical stroke: A transcranial magnetic stimulation study. Brain Stimulat 6(3), 322–329, 2013.

Chiew M, LaConte SM, Graham SJ. Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery. NeuroImage 61(1), 21– 31, 2012.

Chowdhury SA, Matsunami KI. GABA-B-related activity in processing of transcallosal response in cat motor cortex. J Neurosci Res 68(4), 489–495, 2002.

Cohen J. A power primer. Psychol Bull 112(1), 155–159, 1992.

Colebatch JG, Rothwell JC, Day BL, Thompson PD, Marsden CD. Cortical outflow to proximal arm muscles in man. Brain 113(6), 1843–1856, 1990.

Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am J Neuroradiol 22(7), 1326–1333, 2001.

Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, Lesser RP. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain 121(12), 2271–2299, 1998.

Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol 7(11), 1032–1043, 2008.

Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci 103(37), 13848–13853, 2006.

Daskalakis ZJ, Christensen BK, Fitzgerald PB, Roshan L, Chen R. The mechanisms of interhemispheric inhibition in the human motor cortex. J Physiol 543(1), 317–326, 2002.

De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage 29(4), 1359–1367, 2006.

Derosière G, Alexandre F, Bourdillon N, Mandrick K, Ward TE, Perrey S. Similar scaling of contralateral and ipsilateral cortical responses during graded unimanual force generation. NeuroImage 85(1), 471–477, 2014.

Devanne H, Lavoie BA, Capaday C. Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114(2), 329–338, 1997.

Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, Ranieri F, Tombini M, Ziemann U, Rothwell JC, Di Lazzaro V. Modulation of brain plasticity in stroke: A novel model for neurorehabilitation. Nat Rev Neurol 10(10), 597–608, 2014.

van Diessen E, Numan T, van Dellen E, van der Kooi AW, Boersma M, Hofman D, van Lutterveld R, van Dijk BW, van Straaten ECW, Hillebrand A, Stam CJ. Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clin Neurophysiol 126(8), 1468–1481, 2015.

Dodd KC, Nair VA, Prabhakaran V. Role of the contralesional vs. ipsilesional hemisphere in stroke recovery. Front Hum Neurosci 11, 00469 (9 pages), 2017.

Dong Y, Dobkin BH, Cen SY, Wu AD, Winstein CJ. Motor cortex activation during treatment may predict therapeutic gains in paretic hand function after stroke. Stroke 37(6), 1552–1555, 2006.

Duque J, Hummel F, Celnik P, Murase N, Mazzocchio R, Cohen LG. Transcallosal inhibition in chronic subcortical stroke. NeuroImage 28(4), 940–946, 2005.

Duque J, Murase N, Celnik P, Hummel F, Harris-Love M, Mazzocchio R, Olivier E, Cohen LG. Intermanual differences in movement-related interhemispheric inhibition. J Cogn Neurosci 19(2), 204–213, 2007.

Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke. Cochrane Database Syst Rev 11(1), 1–293, 2013.

Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev 11(1), 1–87, 2020.

Engelhard B, Ozeri N, Israel Z, Bergman H, Vaadia E. Inducing gamma oscillations and precise spike synchrony by operant conditioning via brain-machine interface. Neuron 77(2), 361–375, 2013.

Ewald A, Marzetti L, Zappasodi F, Meinecke FC, Nolte G. Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space. NeuroImage 60(1), 476–488, 2012.

Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*Power

3.1: Tests for correlation and regression analyses. Behav Res Methods 41(4), 1149– 1160, 2009.

Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2), 175–191, 2007.

Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD. Interhemispheric inhibition of the human motor cortex. J Physiol 453(1), 525–546, 1992.

Ferree TC, Luu P, Russell GS, Tucker DM. Scalp electrode impedance, infection risk, and EEG data quality. Clin Neurophysiol 112(3), 536–544, 2001.

Fetz EE. Volitional control of cortical oscillations and synchrony. Neuron 77(2), 216– 218, 2013.

Fransson P. Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26(1), 15–29, 2005.

Fries P. A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends Cogn Sci 9(10), 474–480, 2005.

Gao Q, Duan X, Chen H. Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. NeuroImage 54(2), 1280– 1288, 2011.

Gharabaghi A, Kraus D, Leão MT, Spüler M, Walter A, Bogdan M, Rosenstiel W, Naros G, Ziemann U. Coupling brain-machine interfaces with cortical stimulation for brain- state dependent stimulation: Enhancing motor cortex excitability for neurorehabilitation. Front Hum Neurosci 8, 00122 (7 pages), 2014.

Ghosh S, Mehta AR, Huang G, Gunraj C, Hoque T, Saha U, Ni Z, Chen R. Short- and long-latency interhemispheric inhibitions are additive in human motor cortex. J Neurophysiol 109(12), 2955–2962, 2013.

Gilio F, Rizzo V, Siebner HR, Rothwell JC. Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex. J Physiol 551(2), 563–573, 2003.

Granziera C, Daducci A, Meskaldji DE, Roche A, Maeder P, Michel P, Hadjikhani N, Sorensen AG, Frackowiak RS, Thiran J-P, Meuli R, Krueger G. A new early and automated MRI-based predictor of motor improvement after stroke. Neurology 79(1), 39–46, 2012.

Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: New insights from neuroimaging with connectivity approaches. Brain 134(5), 1264–1276, 2011.

Grefkes C, Fink GR. Disruption of motor network connectivity post-stroke and its noninvasive neuromodulation. Curr Opin Neurol 25(6), 670–675, 2012.

Grefkes C, Fink GR. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol 13(2), 206–216, 2014.

Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Küst J, Karbe H, Fink GR. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63(2), 236–246, 2008.

Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci 100(1), 253–258, 2003.

Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Solé J, Siebner HR. A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee. Clin Neurophysiol 123(5), 858–882, 2012.

Haegens S, Nácher V, Luna R, Romo R, Jensen O. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc Natl Acad Sci 108(48), 19377–19382, 2011.

Halder S, Varkuti B, Bogdan M, Kübler A, Rosenstiel W, Sitaram R, Birbaumer N. Prediction of brain-computer interface aptitude from individual brain structure. Front Hum Neurosci 7, 00105 (9 pages), 2013.

Hallett M. Transcranial magnetic stimulation: A primer. Neuron 55(2), 187–199, 2007.

Hamedi M, Salleh S-H, Noor AM. Electroencephalographic motor imagery brain connectivity analysis for BCI: A review. Neural Comput 28(6), 999–1041, 2016.

Hao Z, Wang D, Zeng Y, Liu M. Repetitive transcranial magnetic stimulation for improving function after stroke. Cochrane Database Syst Rev 5(1), 1–47, 2013.

Harris-Love ML, Chan E, Dromerick AW, Cohen LG. Neural substrates of motor recovery in severely impaired stroke patients with hand paralysis. Neurorehabil Neural Repair 30(4), 328–338, 2016.

Harris-Love ML, Perez MA, Chen R, Cohen LG. Interhemispheric inhibition in distal and proximal arm representations in the primary motor cortex. J Neurophysiol 97(3), 2511– 2515, 2007.

Hasegawa K, Kasuga S, Takasaki K, Mizuno K, Liu M, Ushiba J. Ipsilateral EEG mu rhythm reflects the excitability of uncrossed pathways projecting to shoulder muscles. J NeuroEngineering Rehabil 14(85), 11, 2017.

Hayashi M, Mizuguchi N, Tsuchimoto S, Ushiba J. Neurofeedback of scalp bi- hemispheric EEG sensorimotor rhythm guides hemispheric activation of sensorimotor cortex in the targeted hemisphere. NeuroImage 223, 117298 (15 pages), 2020.

Hayashi M, Mizuguchi N, Tsuchimoto S, Ushiba J. Neurofeedback of scalp bi- hemispheric EEG sensorimotor rhythm guides hemispheric activation of sensorimotor cortex in the targeted hemisphere. Brain-Comput Interface Res State---Art Summ 9(1), 25–38, 2021.

Hayashi M, Tsuchimoto S, Mizuguchi N, Miyatake M, Kasuga S, Ushiba J. Two-stage regression of high-density scalp electroencephalograms visualizes force regulation signaling during muscle contraction. J Neural Eng 16, 056020 (14 pages), 2019.

He S, Everest-Phillips C, Clouter A, Brown P, Tan H. Neurofeedback-linked suppression of cortical β bursts speeds up movement initiation in healthy motor control: A double- blind sham-controlled study. J Neurosci 40(20), 4021–4032, 2020.

Hofer S, Frahm J. Topography of the human corpus callosum revisited: Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage 32(3), 989–994, 2006.

Hsu W-Y, Cheng C-H, Liao K-K, Lee I-H, Lin Y-Y. Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: A meta-analysis. Stroke 43(7), 1849–1857, 2012.

Hummel FC, Cohen LG. Non-invasive brain stimulation: A new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5(8), 708–712, 2006.

Hussain SJ, Claudino L, Bönstrup M, Norato G, Cruciani G, Thompson R, Zrenner C, Ziemann U, Buch E, Cohen LG. Sensorimotor oscillatory phase–power interaction gates resting human corticospinal output. Cereb Cortex 29(9), 3766–3777, 2019.

Irlbacher K, Brocke J, Mechow J v., Brandt SA. Effects of GABAA and GABAB agonists on interhemispheric inhibition in man. Clin Neurophysiol 118(2), 308–316, 2007.

Iwama S, Tsuchimoto S, Hayashi M, Mizuguchi N, Ushiba J. Scalp electroencephalograms over ipsilateral sensorimotor cortex reflect contraction patterns of unilateral finger muscles. NeuroImage 222, 117249 (11 pages), 2020.

Jarbo K, Verstynen T, Schneider W. In vivo quantification of global connectivity in the human corpus callosum. NeuroImage 59(3), 1988–1996, 2012.

Johnson KA, Hartwell K, LeMatty T, Borckardt J, Morgan PS, Govindarajan K, Brady K, George MS. Intermittent ‘real-time’ fMRI feedback is superior to continuous presentation for a motor imagery task: A pilot study. J Neuroimaging 22(1), 58–66, 2012.

Khademi F, Royter V, Gharabaghi A. Distinct beta-band oscillatory circuits underlie corticospinal gain modulation. Cereb Cortex 28(4), 1502–1515, 2018.

Kim JH. Book review: fundamentals of clinical trials. 4th ed. Int Neurourol J 17(2), 96, 2013.

Kober SE, Witte M, Grinschgl S, Neuper C, Wood G. Placebo hampers ability to self- regulate brain activity: A double-blind sham-controlled neurofeedback study. NeuroImage 181(1), 797–806, 2018.

Koh C-L, Tang P-F, Chen H-I, Hsu Y-C, Hsieh C-L, Tseng W-YI. Impaired callosal motor fiber integrity and upper extremity motor impairment are associated with stroke lesion location. Neurorehabil Neural Repair 32(6–7), 602–612, 2018.

Kraus D, Naros G, Bauer R, Leão MT, Ziemann U, Gharabaghi A. Brain-robot interface driven plasticity: Distributed modulation of corticospinal excitability. NeuroImage 125(1), 522–532, 2016.

Li J-Y, Lai P-H, Chen R. Transcallosal inhibition in patients with callosal infarction. J Neurophysiol 109(3), 659–665, 2013.

Liew S-L, Rana M, Cornelsen S, Fortunato de Barros Filho M, Birbaumer N, Sitaram R, Cohen LG, Soekadar SR. Improving motor corticothalamic communication after stroke using real-time fMRI connectivity-based neurofeedback. Neurorehabil Neural Repair 30(7), 671–675, 2016.

Madsen KH, Karabanov AN, Krohne LG, Safeldt MG, Tomasevic L, Siebner HR. No trace of phase: Corticomotor excitability is not tuned by phase of pericentral mu- rhythm. Brain Stimulat 12(5), 1261–1270, 2019.

Mansour S, Ang KK, Nair KPS, Phua KS, Arvaneh M. Efficacy of brain-computer interface and the impact of its design characteristics on poststroke upper-limb rehabilitation: A systematic review and meta-analysis of randomized controlled trials. Clin EEG Neurosci 53(1), 79–90, 2022.

Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL. Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31(3), 656–661, 2000.

Mayaud L, Congedo M, Van Laghenhove A, Orlikowski D, Figère M, Azabou E, Cheliout-Heraut F. A comparison of recording modalities of P300 event-related potentials (ERP) for brain-computer interface (BCI) paradigm. Neurophysiol Clin Neurophysiol 43(4), 217–227, 2013.

McFarland DJ, McCane LM, David SV, Wolpaw JR. Spatial filter selection for EEG- based communication. Electroencephalogr Clin Neurophysiol 103(3), 386–394, 1997. Meyer B-U, Röricht S, von Einsiedel HG, Kruggel F, Weindl A. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118(2), 429–440, 1995.

Mizuguchi N, Maudrich T, Kenville R, Carius D, Maudrich D, Villringer A, Ragert P. Structural connectivity prior to whole-body sensorimotor skill learning associates with changes in resting state functional connectivity. NeuroImage 197(1), 191–199, 2019.

Moher D, Schulz KF, Altman D. The CONSORT Statement: Revised recommendations for omproving the quality of reports of parallel-group randomized trials. JAMA 285(15), 1987–1991, 2001.

Moon HS, Jiang H, Vo TT, Jung WB, Vazquez AL, Kim S-G. Contribution of excitatory and inhibitory neuronal activity to BOLD fMRI. Cereb Cortex 31(9), 4053–4067, 2021. Morishita T, Uehara K, Funase K. Changes in interhemispheric inhibition from active to resting primary motor cortex during a fine-motor manipulation task. J Neurophysiol 107(11), 3086–3094, 2012.

Muellbacher W, Richards C, Ziemann U, Wittenberg G, Weltz D, Boroojerdi B, Cohen L, Hallett M. Improving hand function in chronic stroke. Arch Neurol 59(8), 1278– 1282, 2002.

Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55(3), 400–409, 2004.

Nakayashiki K, Saeki M, Takata Y, Hayashi Y, Kondo T. Modulation of event-related desynchronization during kinematic and kinetic hand movements. J NeuroEngineering Rehabil 11(90), 9, 2014.

Naros G, Lehnertz T, Leão MT, Ziemann U, Gharabaghi A. Brain state-dependent gain modulation of corticospinal output in the active motor system. Cereb Cortex 30(1), 371–381, 2020.

Naros G, Naros I, Grimm F, Ziemann U, Gharabaghi A. Reinforcement learning of self- regulated sensorimotor β-oscillations improves motor performance. NeuroImage 134(1), 142–152, 2016.

Nelson AJ, Hoque T, Gunraj C, Ni Z, Chen R. Bi-directional interhemispheric inhibition during unimanual sustained contractions. BMC Neurosci 10(31), 13, 2009.

Neuper C, Scherer R, Reiner M, Pfurtscheller G. Imagery of motor actions: Differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cogn Brain Res 25(3), 668–677, 2005.

Neuper C, Wörtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res 159(14), 211–222, 2006.

Ni Z, Gunraj C, Nelson AJ, Yeh I-J, Castillo G, Hoque T, Chen R. Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human. Cereb Cortex 19(7), 1654–1665, 2009.

Ni Z, Müller-Dahlhaus F, Chen R, Ziemann U. Triple-pulse TMS to study interactions between neural circuits in human cortex. Brain Stimulat 4(4), 281–293, 2011.

Nojima I, Sugata H, Takeuchi H, Mima T. Brain-computer interface training based on brain activity can induce motor recovery in patients with stroke: A meta-analysis. Neurorehabil Neural Repair 36(2), 83–96, 2022.

Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115(10), 2292–2307, 2004.

Notturno F, Marzetti L, Pizzella V, Uncini A, Zappasodi F. Local and remote effects of transcranial direct current stimulation on the electrical activity of the motor cortical network. Hum Brain Mapp 35(5), 2220–2232, 2014.

Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9(1), 97–113, 1971.

Ono T, Kimura A, Ushiba J. Daily training with realistic visual feedback improves reproducibility of event-related desynchronisation following hand motor imagery. Clin Neurophysiol 124(9), 1779–1786, 2013.

Ono T, Shindo K, Kawashima K, Ota N, Ito M, Ota T, Mukaino M, Fujiwara T, Kimura A, Liu M, Ushiba J. Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Front Neuroengineering 7, 00019 (8 pages), 2014.

Ono T, Tomita Y, Inose M, Ota T, Kimura A, Liu M, Ushiba J. Multimodal sensory feedback associated with motor attempts alters BOLD Responses to paralyzed hand movement in chronic stroke patients. Brain Topogr 28(2), 340–351, 2015.

O’Sullivan LW, Gallwey TJ. Upper-limb surface electro-myography at maximum supination and pronation torques: The effect of elbow and forearm angle. J Electromyogr Kinesiol 12(4), 275–285, 2002.

Palmer LM, Schulz JM, Murphy SC, Ledergerber D, Murayama M, Larkum ME. The cellular basis of GABA(B)-mediated interhemispheric inhibition. Science 335(6071), 989–993, 2012.

Peña-Gómez C, Sala-Lonch R, Junqué C, Clemente IC, Vidal D, Bargalló N, Falcón C, Valls-Solé J, Pascual-Leone Á, Bartrés-Faz D. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI. Brain Stimulat 5(3), 252–263, 2012.

Pereira J, Direito B, Sayal A, Ferreira C, Castelo-Branco M. Self-modulation of premotor cortex interhemispheric connectivity in a real-time functional magnetic resonance imaging neurofeedback study using an adaptive approach. Brain Connect 9(9), 662– 672, 2019.

Pfurtscheller G. Functional brain imaging based on ERD/ERS. Vision Res 41(10–11), 1257–1260, 2001.

Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11), 1842–1857, 1999.

Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans. Neurosci Lett 239(2–3), 65–68, 1997.

Picazio S, Veniero D, Ponzo V, Caltagirone C, Gross J, Thut G, Koch G. Prefrontal control over motor cortex cycles at beta frequency during movement inhibition. Curr Biol 24(24), 2940–2945, 2014.

Pichiorri F, Fallani FDV, Cincotti F, Babiloni F, Molinari M, Kleih SC, Neuper C, Kübler A, Mattia D. Sensorimotor rhythm-based brain–computer interface training: The impact on motor cortical responsiveness. J Neural Eng 8, 025020 (9 pages), 2011.

Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, Paolucci S, Inghilleri M, Astolfi L, Cincotti F, Mattia D. Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol 77(5), 851–865, 2015.

Posse S, Fitzgerald D, Gao K, Habel U, Rosenberg D, Moore GJ, Schneider F. Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self- induced sadness. NeuroImage 18(3), 760–768, 2003.

Prasad G, Herman P, Coyle D, McDonough S, Crosbie J. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: A feasibility study. J Neuroengineering Rehabil 7, 60 (17 pages), 2010.

Ramos-Murguialday A, Broetz D, Rea M, Läer L, Yilmaz Ö, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Vyziotis A, Cho W, Agostini M, Soares E, Soekadar S, Caria A, Cohen LG, Birbaumer N. Brain-machine-interface in chronic stroke rehabilitation: A controlled study. Ann Neurol 74(1), 100–108, 2013.

Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. NeuroImage 55(3), 1147–1158, 2011.

Robertson MM, Furlong S, Voytek B, Donoghue T, Boettiger CA, Sheridan MA. EEG power spectral slope differs by ADHD status and stimulant medication exposure in early childhood. J Neurophysiol 122(6), 2427–2437, 2019.

Ros T, Enriquez-Geppert S, Zotev V, Young KD, Wood G, Whitfield-Gabrieli S, Wan F, Vuilleumier P, Vialatte F, Van De Ville D, Todder D, Surmeli T, Sulzer JS, Strehl U, Sterman MB, Steiner NJ, Sorger B, Soekadar SR, Sitaram R, Sherlin LH, Schönenberg M, Scharnowski F, Schabus M, Rubia K, Rosa A, Reiner M, Pineda JA, Paret C, Ossadtchi A, Nicholson AA, Nan W, Minguez J, Micoulaud-Franchi J-A, Mehler DMA, Lührs M, Lubar J, Lotte F, Linden DEJ, Lewis-Peacock JA, Lebedev MA, Lanius RA, Kübler A, Kranczioch C, Koush Y, Konicar L, Kohl SH, Kober SE, Klados MA, Jeunet C, Janssen TWP, Huster RJ, Hoedlmoser K, Hirshberg LM, Heunis S, Hendler T, Hampson M, Guggisberg AG, Guggenberger R, Gruzelier JH, Göbel RW, Gninenko N, Gharabaghi A, Frewen P, Fovet T, Fernández T, Escolano C, Ehlis A-C, Drechsler R, Christopher deCharms R, Debener S, De Ridder D, Davelaar EJ, Congedo M, Cavazza M, Breteler MHM, Brandeis D, Bodurka J, Birbaumer N, Bazanova OM, Barth B, Bamidis PD, Auer T, Arns M, Thibault RT. Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain 143(6), 1674–1685, 2020.

Ros T, Munneke MAM, Ruge D, Gruzelier JH, Rothwell JC. Endogenous control of waking brain rhythms induces neuroplasticity in humans. Eur J Neurosci 31(4), 770– 778, 2010.

Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12), 2008–2039, 2009.

Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijević MR, Hallett M, Katayama Y, Lücking CH, Maertens de Noordhout AL, Marsden CD, Murray NMF, Rothwell JC, Swash M, Tomberg C. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: Basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91(2), 79–92, 1994.

Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126(6), 1071–1107, 2015.

Ruddy K, Balsters J, Mantini D, Liu Q, Kassraian-Fard P, Enz N, Mihelj E, Chander BS, Soekadar SR, Wenderoth N. Neural activity related to volitional regulation of cortical excitabili. eLife 7, 40843 (21 pages), 2018.

Safeldt MG, Tomasevic L, Karabanov A, Siebner H, Madsen KH. Towards brain-state dependent transcranial magnetic stimulation: Targeting the phase of oscillatory neocortical activity with singe-pulse TMS. Brain Stimulat 10(2), 449–450, 2017.

Sauseng P, Klimesch W, Gerloff C, Hummel FC. Spontaneous locally restricted EEG alpha activity determines cortical excitability in the motor cortex. Neuropsychologia 47(1), 284–288, 2009.

Schulz H, Ubelacker T, Keil J, Müller N, Weisz N. Now I am ready-now i am not: The influence of pre-TMS oscillations and corticomuscular coherence on motor-evoked potentials. Cereb Cortex 24(7), 1708–1719, 2014.

Schwerin S, Dewald JPA, Haztl M, Jovanovich S, Nickeas M, MacKinnon C. Ipsilateral versus contralateral cortical motor projections to a shoulder adductor in chronic hemiparetic stroke: Implications for the expression of arm synergies. Exp Brain Res 185(3), 509–519, 2008.

Seghier ML. Laterality index in functional MRI: Methodological issues. Magn Reson Imaging 26(5), 594–601, 2008.

Shekhawat GS, Vanneste S. Optimization of transcranial direct current stimulation of dorsolateral prefrontal cortex for tinnitus: A non-linear dose-response effect. Sci Rep 8, 8311 (8 pages), 2018.

Shibata K, Watanabe T, Sasaki Y, Kawato M. Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334(6061), 1413–1415, 2011.

Shindo K, Kawashima K, Ushiba J, Ota N, Ito M, Ota T, Kimura A, Liu M. Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: A preliminary case series study. J Rehabil Med 43(10), 951–957, 2011.

Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, Weiskopf N, Blefari ML, Rana M, Oblak E, Birbaumer N, Sulzer J. Closed-loop brain training: The science of neurofeedback. Nat Rev Neurosci 18(2), 86–100, 2017.

Smania N, Paolucci S, Tinazzi M, Borghero A, Manganotti P, Fiaschi A, Moretto G, Bovi P, Gambarin M. Active finger extension: A simple movement predicting recovery of arm function in patients with acute stroke. Stroke 38(3), 1088–1090, 2007.

Soekadar SR, Birbaumer N, Slutzky MW, Cohen LG. Brain–machine interfaces in neurorehabilitation of stroke. Neurobiol Dis 83(1), 172–179, 2015a.

Soekadar SR, Witkowski M, Birbaumer N, Cohen LG. Enhancing hebbian learning to control brain oscillatory activity. Cereb Cortex 25(9), 2409–2415, 2015b.

Sommer M, Gileles E, Knappmeyer K, Rothkegel H, Polania R, Paulus W. Carbamazepine reduces short-interval interhemispheric inhibition in healthy humans. Clin Neurophysiol 123(2), 351–357, 2012.

Stancák A, Pfurtscheller G. The effects of handedness and type of movement on the contralateral preponderance of mu-rhythm desynchronisation. Electroencephalogr Clin Neurophysiol 99(2), 174–182, 1996.

Stefanou M-I, Desideri D, Belardinelli P, Zrenner C, Ziemann U. Phase synchronicity of μ-rhythm determines efficacy of interhemispheric communication between human motor cortices. J Neurosci 38(49), 10525–10534, 2018.

Takemi M, Maeda T, Masakado Y, Siebner HR, Ushiba J. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface. NeuroImage 183(1), 597–605, 2018.

Takemi M, Masakado Y, Liu M, Ushiba J. Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex. J Neurophysiol 110(5), 1158–1166, 2013.

Takemi M, Masakado Y, Liu M, Ushiba J. Sensorimotor event-related desynchronization represents the excitability of human spinal motoneurons. Neuroscience 297(1), 58–67, 2015.

Takeuchi N, Oouchida Y, Izumi S-I. Motor control and neural plasticity through interhemispheric interactions. Neural Plast 2012, 823285 (13 pages), 2012.

Thabane L, Ma J, Chu R, Cheng J, Ismaila A, Rios LP, Robson R, Thabane M, Giangregorio L, Goldsmith CH. A tutorial on pilot studies: the what, why and how. BMC Med Res Methodol 10, 1 (10 pages), 2010.

Thies M, Zrenner C, Ziemann U, Bergmann TO. Sensorimotor mu-alpha power is positively related to corticospinal excitability. Brain Stimulat 11(5), 1119–1122, 2018. Thompson AK, Chen XY, Wolpaw JR. Acquisition of a simple motor skill: Task- dependent adaptation plus long-term change in the human soleus H-reflex. J Neurosci 29(18), 5784–5792, 2009.

Thrasher TA, Zivanovic V, McIlroy W, Popovic MR. Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy. Neurorehabil Neural Repair 22(6), 706–714, 2008.

Toriyama H, Ushiba J, Ushiyama J. Subjective vividness of kinesthetic motor imagery is associated with the similarity in magnitude of sensorimotor event-related desynchronization between motor execution and motor imagery. Front Hum Neurosci 12, 00295 (10 pages), 2018.

Tsuchimoto S, Shibusawa S, Iwama S, Hayashi M, Okuyama K, Mizuguchi N, Kato K, Ushiba J. Use of common average reference and large-Laplacian spatial-filters enhances EEG signal-to-noise ratios in intrinsic sensorimotor activity. J Neurosci Methods 353, 109089 (9 pages), 2021.

Tsuchimoto S, Shibusawa S, Mizuguchi N, Kato K, Ebata H, Liu M, Hanakawa T, Ushiba J. Resting-state fluctuations of EEG sensorimotor rhythm reflect BOLD activities in the pericentral areas: A simultaneous EEG-fMRI study. Front Hum Neurosci 11, 00356 (10 pages), 2017.

Tsutsumi R, Shirota Y, Ohminami S, Terao Y, Ugawa Y, Hanajima R. Conditioning intensity-dependent interaction between short-latency interhemispheric inhibition and short-latency afferent inhibition. J Neurophysiol 108(4), 1130–1137, 2012.

Ushiba J, Soekadar SR. Brain–machine interfaces for rehabilitation of poststroke hemiplegia. Prog Brain Res 228(1), 163–183, 2016.

Varela F, Lachaux J-P, Rodriguez E, Martinerie J. The brainweb: Phase synchronization and large-scale integration. Nat Rev Neurosci 2(4), 229–239, 2001.

Várkuti B, Guan C, Pan Y, Phua KS, Ang KK, Kuah CWK, Chua K, Ang BT, Birbaumer N, Sitaram R. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil Neural Repair 27(1), 53–62, 2013.

Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140), 83–86, 2007.

Vukelić M, Gharabaghi A. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality. NeuroImage 111(1), 1–11, 2015.

Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. Neural correlates of motor recovery after stroke: A longitudinal fMRI study. Brain 126(11), 2476–2496, 2003a.

Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. Neural correlates of outcome after stroke: A cross-sectional fMRI study. Brain J Neurol 126(6), 1430–1448, 2003b. Waters S, Wiestler T, Diedrichsen J. Cooperation not competition: Bihemispheric tDCS and fMRI show role for ipsilateral hemisphere in motor learning. J Neurosci 37(31), 7500–7512, 2017.

Weiskopf N, Mathiak K, Bock SW, Scharnowski F, Veit R, Grodd W, Goebel R, Birbaumer N. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans Biomed Eng 51(6), 966– 970, 2004.

Westlake KP, Nagarajan SS. Functional connectivity in relation to motor performance and recovery after stroke. Front Syst Neurosci 5, 00008 (12 pages), 2011.

Williams JA, Pascual-Leone A, Fregni F. Interhemispheric modulation induced by cortical stimulation and motor training. Phys Ther 90(3), 398–410, 2010.

Witelson SF. The brain connection: The corpus callosum is larger in left-handers. Science 229(4714), 665–668, 1985.

Xu J, Branscheidt M, Schambra H, Steiner L, Widmer M, Diedrichsen J, Goldsmith J, Lindquist M, Kitago T, Luft AR, Krakauer JW, Celnik PA. Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation. Ann Neurol 85(4), 502–513, 2019.

Young BM, Nigogosyan Z, Remsik A, Walton LM, Song J, Nair VA, Grogan SW, Tyler ME, Edwards DF, Caldera K, Sattin JA, Williams JC, Prabhakaran V. Changes in functional connectivity correlate with behavioral gains in stroke patients after therapy using a brain-computer interface device. Front Neuroengineering 7, 00025 (12 pages), 2014.

Young BM, Stamm JM, Song J, Remsik AB, Nair VA, Tyler ME, Edwards DF, Caldera K, Sattin JA, Williams JC, Prabhakaran V. Brain-Computer interface training after stroke affects patterns of brain-behavior relationships in corticospinal motor fibers. Front Hum Neurosci 10, 00457 (13 pages), 2016.

Yuan H, Liu T, Szarkowski R, Rios C, Ashe J, He B. Negative covariation between task- related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: An EEG and fMRI study of motor imagery and movements. NeuroImage 49(3), 2596– 2606, 2010.

Zarkowski P, Shin CJ, Dang T, Russo J, Avery D. EEG and the variance of motor evoked potential amplitude. Clin EEG Neurosci 37(3), 247–251, 2006.

Zhang J, Jadavji Z, Zewdie E, Kirton A. Evaluating if children can use simple brain computer interfaces. Front Hum Neurosci 13, 00024 (7 pages), 2019.

Zrenner C, Desideri D, Belardinelli P, Ziemann U. Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimulat 11(2), 374–389, 2018.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る