リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Random Conductance Model with Heavy Tails on Nested Fractal Graphs」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Random Conductance Model with Heavy Tails on Nested Fractal Graphs

Croydon, David A. 京都大学 DOI:10.1007/978-3-030-59649-1_10

2021

概要

Recently, Kigami’s resistance form framework has been applied to provide a general approach for deriving the scaling limits of random walks on graphs with a fractal scaling limit (Croydon, Ann Inst Henri Poincaré Probab Stat 54(4):1939–1968, 2018; Croydon et al., Electron J Probab 22, paper no.82, 41, 2017). As an illustrative example, this article describes an application to the random conductance model with heavy tails on nested fractal graphs.

この論文で使われている画像

参考文献

1. R. Abraham, J.-F. Delmas, and P. Hoscheit, A note on the Gromov-Hausdorff-Prokhorov

distance between (locally) compact metric measure spaces, Electron. J. Probab. 18 (2013), no.

14, 21.

2. S. Andres, M. T. Barlow, J.-D. Deuschel, and B. M. Hambly, Invariance principle for the

random conductance model, Probab. Theory Related Fields 156 (2013), no. 3-4, 535–580.

3. S. Andres, J.-D. Deuschel, and M. Slowik, Invariance principle for the random conductance

model in a degenerate ergodic environment, Ann. Probab. 43 (2015), no. 4, 1866–1891.

4. G. Andriopoulos, Invariance principles for random walks in random environment on trees,

preprint available at arXiv:1812.10197.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

14

David A. Croydon

5. E. Archer, Brownian motion on stable looptrees, preprint available at arXiv:1902.01713.

6. S. Athreya, W. Löhr, and A. Winter, Invariance principle for variable speed random walks on

trees, Stochastic Process. Appl., to appear.

7.

, The gap between Gromov-vague and Gromov-Hausdorff-vague topology, Stochastic

Process. Appl. 126 (2016), no. 9, 2527–2553.

8. M. T. Barlow, Diffusions on fractals, Lectures on probability theory and statistics (Saint-Flour,

1995), Lecture Notes in Math., vol. 1690, Springer, Berlin, 1998, pp. 1–121.

9. M. T. Barlow and R. F. Bass, On the resistance of the Sierpiński carpet, Proc. Roy. Soc. London

Ser. A 431 (1990), no. 1882, 345–360.

10. M. T. Barlow, T. Coulhon, and T. Kumagai, Characterization of sub-Gaussian heat kernel

estimates on strongly recurrent graphs, Comm. Pure Appl. Math. 58 (2005), no. 12, 1642–

1677.

11. M. T. Barlow, D. A. Croydon, and T. Kumagai, Subsequential scaling limits of simple random

walk on the two-dimensional uniform spanning tree, Ann. Probab. 45 (2017), no. 1, 4–55.

12. M. T. Barlow and J.-D. Deuschel, Invariance principle for the random conductance model with

unbounded conductances, Ann. Probab. 38 (2010), no. 1, 234–276.

13. M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory

Related Fields 79 (1988), no. 4, 543–623.

14. M. T. Barlow and J. Černý, Convergence to fractional kinetics for random walks associated

with unbounded conductances, Probab. Theory Related Fields 149 (2011), no. 3-4, 639–673.

15. D. ben Avraham and S. Havlin, Diffusion and reactions in fractals and disordered systems,

Cambridge University Press, Cambridge, 2000.

16. P. Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability

and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999, A WileyInterscience Publication.

17. M. Biskup and T. M. Prescott, Functional CLT for random walk among bounded random

conductances, Electron. J. Probab. 12 (2007), no. 49, 1323–1348.

18. D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in

Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001.

19. D. A. Croydon, An introduction to stochastic processed associated with resistance forms and

their scaling limits, RIMS Kôkyûroku (2018), no. 2030, 1–8.

, Scaling limits of stochastic processes associated with resistance forms, Ann. Inst.

20.

Henri Poincaré Probab. Stat. 54 (2018), no. 4, 1939–1968.

21. D. A. Croydon, B. M. Hambly, and T. Kumagai, Time-changes of stochastic processes associated with resistance forms, Electron. J. Probab. 22 (2017), Paper No. 82, 41.

, Heat kernel estimates for FIN processes associated with resistance forms, Stochastic

22.

Process. Appl. 129 (2019), no. 9, 2991–3017.

23. T. Duquesne and J.-F. Le Gall, Probabilistic and fractal aspects of Lévy trees, Probab. Theory

Related Fields 131 (2005), no. 4, 553–603.

24. S. N. Evans, Probability and real trees, Lecture Notes in Mathematics, vol. 1920, Springer,

Berlin, 2008, Lectures from the 35th Summer School on Probability Theory held in Saint-Flour,

July 6–23, 2005.

25. L. R. G. Fontes, M. Isopi, and C. M. Newman, Random walks with strongly inhomogeneous

rates and singular diffusions: convergence, localization and aging in one dimension, Ann.

Probab. 30 (2002), no. 2, 579–604.

26. M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet forms and symmetric Markov processes,

extended ed., de Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin,

2011.

27. S. Goldstein, Random walks and diffusions on fractals, Percolation theory and ergodic theory

of infinite particle systems (Minneapolis, Minn., 1984–1985), IMA Vol. Math. Appl., vol. 8,

Springer, New York, 1987, pp. 121–129.

28. B. M. Hambly and T. Kumagai, Heat kernel estimates for symmetric random walks on a class

of fractal graphs and stability under rough isometries, Fractal geometry and applications: a

jubilee of Benoît Mandelbrot, Part 2, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc.,

Providence, RI, 2004, pp. 233–259.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

The random conductance model with heavy tails on nested fractal graphs

15

29. J. Kigami, Effective resistances for harmonic structures on p.c.f. self-similar sets, Math. Proc.

Cambridge Philos. Soc. 115 (1994), no. 2, 291–303.

, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge Univer30.

sity Press, Cambridge, 2001.

31.

, Resistance forms, quasisymmetric maps and heat kernel estimates, Mem. Amer. Math.

Soc. 216 (2012), no. 1015, vi+132.

32. T. Kumagai, Homogenization on finitely ramified fractals, Stochastic analysis and related topics

in Kyoto, Adv. Stud. Pure Math., vol. 41, Math. Soc. Japan, Tokyo, 2004, pp. 189–207.

33. T. Kumagai and S. Kusuoka, Homogenization on nested fractals, Probab. Theory Related Fields

104 (1996), no. 3, 375–398.

34. S. Kusuoka, A diffusion process on a fractal, Probabilistic methods in mathematical physics

(Katata/Kyoto, 1985), Academic Press, Boston, MA, 1987, pp. 251–274.

35. T. Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc. 83 (1990), no. 420,

iv+128.

36. G. Miermont, Tessellations of random maps of arbitrary genus, Ann. Sci. Éc. Norm. Supér.

(4) 42 (2009), no. 5, 725–781.

37. C. Sabot, Existence and uniqueness of diffusions on finitely ramified self-similar fractals, Ann.

Sci. École Norm. Sup. (4) 30 (1997), no. 5, 605–673.

38. J. Černý, On two-dimensional random walk among heavy-tailed conductances, Electron. J.

Probab. 16 (2011), no. 10, 293–313.

39. W. Whitt, Stochastic-process limits, Springer Series in Operations Research, Springer-Verlag,

New York, 2002, An introduction to stochastic-process limits and their application to queues.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る