リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「On Soliton Solutions of the Anti-Self-Dual Yang-Mills Equations from the Perspective of Integrable Systems」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

On Soliton Solutions of the Anti-Self-Dual Yang-Mills Equations from the Perspective of Integrable Systems

HUANG, Shan-chi 名古屋大学

2022.03.01

概要

Yang-Mills theory, which is constructed based on the unitary gauge theory, forms the foundation of the Standard Model for elementary particles. On the other hand, classical solitons in Yang-Mills theory, such as instanton, monopole, vortex, and domain wall, play important roles in the study of different fields of physics and mathematics. All of the above solitons are known as the exact solutions of anti-self-dual Yang-Mills (ASDYM) equations (or dimensionally reduced equations of ASDYM). In this thesis, we construct a class of ASDYM 1-solitons and multi-solitons that are different from the already known solitons

In section 2, we review some necessary knowledge of quasideterminants which is required for the discussion in section 4, section 6, and section 7. Quasideterminats can be considered roughly as a noncommutative generalization of determinants. More than the meaning of mathematical generalization, quasideterminants are naturally fit for the description of noncommutative integrable systems. We introduce some elementary operation rules of quasideterminants, noncommutative Jacobi identity, homological relation, and a derivative formula of quasideterminants as useful mathematical tools in this section.

In section 3, we review some necessary knowledge of ASDYM theory mainly from the perspective of integrable systems. We consider the ASDYM theory in 4-dimensional complex space and introduce several equivalent descriptions of ASDYM equation. Especially, the anti-self-dual gauge fields can be expressed in terms of so-called J-matrix which is the solution of Yang equation. Combining the J-matrix formulation with Lax representation of ASDYM, it forms almost the theoretical foundation of our solutions in this thesis.

In section 4, we introduce a Darboux transformation which is considered firstly by Nimmo, Gilson, and Ohta. After n iterations of Darboux transformation, the resulting solutions (J-matrix) can be expressed beautifully in terms of Wronskian type (n+1)-th order quasideterminants. More precisely, each element of Wronskian type quasideterminant is a ratio of ordinary Wronskian determinants. We call them quasi-Wronskian for short in this thesis. This section is written mainly based on 副論文3 (Journal of Physics A: Mathematical and Theoretical, 53 (2020) 404002.), and partially by some recent results (Proposition 4.7 and Theorem 4.8).

In section 5, we construct ASDYM 1-solitons by applying 1 iteration of Darboux transformation. Firstly, we discuss general cases in 4-dimensional complex space and then impose some conditions to obtain 1-solitons on real spaces with Euclidean signature (+,+,+,+), Minkowski signature (+,−,−,−), and split signature(+,+,−,−) (Ultrahyperbolic space). In particular, the principal peak of Lagrangian density of 1-soliton is localized on a 3-dimensional hyperplane in 4-dimensional space. Therefore, we use the term soliton walls to distinguish them from domain walls because domain walls are described by scalar fields. Furthermore, we give an ansatz to obtain real-valued Lagrangian density even if the gauge group is nonunitary. For split signature case, we realized the gauge group to G=SU(2) successfully and hence the solion walls could be the candidates of physically interesting results on Ultrahyperbolic space. This section is written based on 副論 文2 (Journal of High Energy Physics 2010 (2020) 101) and some revisions.

In section 6, we construct a special class of ASDYM n-solitons by applying n iterations of Darboux transformation. The resulting n-solitons are in the form of quasi-Wronskian. Furthermore, we use the techniques of quasideterminants to show that in the asymptotic region, n-soliton possesses n isolated Lagrangian densities (with phase shifts). Therefore, we can interpret it as n intersecting soliton walls. We calculate the phase shift factors explicitly and find that the Lagrangian densities can be real-valued for three kinds of signature. Especially for split signature, we show that the gauge group can be realized to G=SU(2). This section is written based on 副論文1 ([arXiv : 2106.01353]) and some revisions.

In section 7, we construct an example of G=SU(3) 1-soliton on Ultrahyperbolic space and it can be interpreted as soliton wall as well. After applying n iterations of Darboux transformation, we show that the resulting n-solitons can be interpreted as n intersecting soliton walls as well. As for gauge group, it can be realized to G=SU(3) for each soliton wall in the asymptotic region. This section is written based on some unpublished results recently.

参考文献

[1] A. Actor, ”Classical solutions of SU(2) Yang-Mills theories”, Rev. Mod. Phys. 51, pp.461-525 (1979).

[2] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld and Yu. I. Manin, ”Construction of instantons”, Phys. Lett. A 65, pp.185-187 (1978).

[3] M. F. Atiyah and R. S. Ward, ”Instantons and Algebraic Geometry”, Commun. Math. Phys. 55, pp.117-124 (1977).

[4] A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin, ”Pseudoparticle solutions of the Yang-Mills equations”, Phys. Lett. B 59, pp.85-87 (1975).

[5] E. B. Bobomolny, ”The stability of classical solutions”, Sov. J. Nucl. Phys. 24, pp.449 (1976).

[6] Y. Brihaye, D. B. Fairlie, J. Nuyts and R. G. Yates, ”Properties of the self dual equations for an SU(n) gauge theory”, J. Math. Phys. 19, pp.2528-2532 (1978).

[7] L. L. Chau, J. C. Shaw and H. C. Yen, ”N-soliton-type solutions of SU(2) self-duality Yang-Mills equations in various spaces and the B¨acklund transformations”, J. Phys. A: Math. Gen. 27, pp.7131-7138 (1994).

[8] E. Corrigan and D. B. Fairlie, ”Scalar field theory and exact solutions to a classical SU(2) gauge theory”, Phys. Lett. B 67, pp.69-71 (1977).

[9] E. Corrigan, D. B. Fairlie, R. G. Yates and P. Goddard, ”B¨acklund transformations and the construction of the Atiyah-Ward ans¨atze for self-dual SU(2) gauge fields” Phys. Lett. B 72 (3), pp.354-356 (1978).

[10] E. Corrigan, D. B. Fairlie, R. G. Yates and P. Goddard, ”The Construction of Self-dual Solutions to SU(2) Gauge Theory”, Commun. Math. Phys. 58, pp.223-240 (1978).

[11] H. J. deVega, ”Non-linear multi-plane wave solutions of self-dual Yang-Mills theory”, Commun. Math. Phys. 116, pp.659-674 (1988).

[12] L. A. Dickey, Soliton equations and Hamiltonian systems (2nd ed.), (World Scientific, Singapore, 2003).

[13] P. G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, (Cambridge university press, 1983).

[14] P. G. Drazin, R. S. Johnson, Solitons: an introduction (2nd ed.), (Cambridge U P, 1989).

[15] P. Etingof, I. Gelfand and V. Retakh, ”Factorization of differential operators, quasideterminants, and nonabelian Toda field equations”, Math. Res. Lett. 4, pp.413-425 (1997). [arXiv:q-alg/9701008v2].

[16] F. J. Ernst, ”New Formulation of the Axially Symmetric Gravitational Field Problem”, Phys. Rev. 167, pp.1175-1178 (1968).

[17] F. J. Ernst, ”New Formulation of the Axially Symmetric Gravitational Field Problem II”, Phys. Rev. 168, pp.1415-1417 (1968).

[18] I. Gelfand, S. Gelfand, V. Retakh and R. Wilson, ”Quasideterminants”, Adv. Math. 193, pp.56-141 (2005). [arXiv:math/0208146v4].

[19] I. Gelfand and V. Retakh, ”Determinants of matrices over noncommutative rings”, Funct. Anal. Appl. 25, pp.91-102 (1991).

[20] C. R. Gilson, M. Hamanaka, S. C. Huang and J. J. C. Nimmo, ”Soliton Solutions of Noncommutative Anti-Self-Dual Yang-Mills Equations”, J. Phys. A: Math. Theor. 53, 404002(17pp) (2020). [arXiv:2004.01718v2].

[21] C. R. Gilson, M. Hamanaka and J. J. C. Nimmo, ”B¨acklund transformations and the Atiyah-Ward ansatz for noncommutative anti-self-dual Yang-Mills equations”, Proc. Roy. Soc. Lond. A 465, pp.2613 (2009). [arXiv:0812.1222].

[22] C. R. Gilson, M. Hamanaka and J. J. C. Nimmo, ”B¨acklund transformations for noncommutative anti-self-dual Yang-Mills equations”, Glasgow Math. J. 51-A, pp.83-93 (2009). [arXiv:0709.2069].

[23] C. R. Gilson and J. J. C. Nimmo, ”On a direct approach to quasideterminant solutions of a noncommutative KP equation”, J. Phys. A: Math. Theor. 40, pp.3839-3850 (2007). [arXiv:nlin/0701027v2].

[24] C. R. Gilson, J. J. C. Nimmo and C. M. Sooman, ”On a direct approach to quasideterminant solutions of a noncommutative modified KP equation”, J. Phys. A: Math. Theor. 41, 085202(10pp) (2008) [arXiv:0711.3733v2].

[25] M. Hamanaka and S.C. Huang, ”New Soliton Solutions of Anti-Self-Dual Yang-Mills Equations”, JHEP 10, 101 (2020) [arXiv:2004.09248].

[26] M. Hamanaka and S.C. Huang, ”Multi-Soliton Dynamics of Anti-Self-Dual Gauge Fields”, [arXiv:2106.01353].

[27] R. Hirota, The Direct Method in Soliton Theory, (Cambridge UP, 2004).

[28] N. J. Hitchin, ”On the construction of monopoles”, Commun. Math. Phys. 89, pp.145-190 (1983).

[29] R. Jackiw, C. Nohl, and C. Rebbi ”Conformal properties of pseudoparticle configurations”, Phys. Rev. D 15, pp.1642-1646 (1977).

[30] Y. Kodama, KP Solitons and the Grassmannians, (Springer, 2017).

[31] Y. Kodama, Solitons in two-dimensional shallow water, (SIAM, 2018).

[32] Y. Kodama and L. Williams, ”KP solitons and total positivity for the Grassmannian”, Invent. math. 198, pp.637-699 (2014). [arXiv:1106.0023].

[33] N. Manton and P. Sutcliffe, Topological Solitons, (Cambridge UP, 2004).

[34] V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, (SpringerVerlag, 1991).

[35] J. Matsukidaira and J. Satsuma, ”Conserved quantities and symmetries of KP hierarchy”, J. Math. Phys. 31, pp.1426-1434 (1990).

[36] L. J. Mason, ”Global anti-self-dual Yang-Mills fields in Ultrahyperbolic signature and their scattering”, J. reine angew. Math. 597, pp.105-133 (2006). [arXiv:mathph/0505039].

[37] L. J. Mason and N. M. Woodhouse, Integrability, Self-Duality, and Twistor Theory (Oxford UP, 1996).

[38] R. M. Miura, C. S. Gardner, and M. D. Kruskal, ”Korteweg–De Vries equation and generalizations. II. Existence of conservation laws and constants of motion”, J. Math. Phys. 9, pp.1204–1209 (1968).

[39] W. Nahm, ”A Simple Formalism for the BPS Monopole”, Phys. Lett. B 90, pp.413- 414 (1980).

[40] W. Nahm, ”The construction of all self-dual multimonopoles by the ADHM method”, in: Monopoles in Quantum Field Theory, pp.87 (World Sci., 1982).

[41] J. J. C. Nimmo, ”Collected results on quasideterminants”, unpublished (2006).

[42] J. J. C. Nimmo, C. R. Gilson and Y. Ohta, ”Applications of Darboux transformations to the self-dual Yang-Mills equations”, Theor. Math. Phys. 122, pp.239-246 (2000).

[43] H. Ooguri and C. Vafa, ”Geometry of N=2 strings”, Nucl. Phys. B 361, pp.469-518 (1991).

[44] H. Ooguri and C. Vafa, ”N=2 heterotic strings”, Nucl. Phys. B 367, pp.83-104 (1991).

[45] A. M. Polyakov, ”Particle spectrum in quantum field theory,” JETP Lett. 20, pp.194- 195 (1974).

[46] M. K. Prasad and C. M. Sommerfield, ”Exact Classical Solution for the ’t Hooft Monopole and the Julia-Zee Dyon”, Phys. Rev. Lett. 35, pp.760-762 (1975).

[47] N. Sasa, Y. Ohta and J. Matsukidaira, ”Bilinear Form Approach to the Self-Dual Yang-Mills Equations and Integrable Systems in (2+1)-Dimension”, J. Phys. Soc. Jap. 67, pp.83-86 (1998).

[48] M. Sato, ”Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold”, RIMS Kokyuroku 439, pp.30-46 (1981).

[49] M. Sato, Y. Sato, ”Soliton equations as dynamical systems on infinite dimensional Grassmann manifold”, in Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), North-Holland Math. Stud. 81, pp.259-271, (North-Holland, Amsterdam, 1983).

[50] G. ’t Hooft, ”Magnetic monopoles in unified gauge theories”, Nucl. Phys. B 79, pp.276-284 (1974).

[51] G. ’t Hooft, ”Symmetry Breaking through Bell-Jackiw Anomalies”, Phys. Rev. Lett. 37, pp.8-11 (1976).

[52] G. ’t Hooft, unpublished (1976).

[53] M. Toda, Nonlinear Waves and Solitons, (Springer, 1989).

[54] M. Toda, 30 Lectures on Waves and Nonlinear Problem (in Japenese), (Asakura Publishing Co., 1995).

[55] R. S. Ward, ”Integrable and solvable systems, and relations among them”, Phil. Trans. Roy. Soc. Lond. A 315, pp.451-457 (1985).

[56] F. Wilczek, ”Geometry and interaction of instantons”, in: Quark Confinement and Field Theory, pp.211–219, (Wiley, New York, 1977).

[57] L. Witten, ”Static axially symmetric solutions of self-dual SU(2) gauge fields in Euclidean fourdimensional space”, Phys. Rev. D 19, pp.718-720 (1979).

[58] C. N. Yang, ”Condition of Self-Duality for SU(2) Gauge Fields on Euclidean FourDimensional Space”, Phys. Rev. Lett. 38, pp.1377-1379 (1977).

[59] C. N. Yang and R. L. Mills, ”Conservation of Isotopic Spin and Isotopic Gauge Invariance”, Phys. Rev. 96, pp.191-195 (1954)

参考文献をもっと見る