リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Two-photon source toward quantum communication and quantum internet」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Two-photon source toward quantum communication and quantum internet

新関 和哉 横浜国立大学 DOI:info:doi/10.18880/00014615

2022.05.26

概要

本論文では、量子通信レートの向上とそれによる量子中継ノード数の増加を目標として、波長分割多重・時分割多重量子通信が可能な量子中継システムを見据えた通信波長量子光源および量子メモリへの結合システム研究を行った。非線形媒質において生成される 2 光子は、通信波長・狭線幅といった長距離伝送・量子メモリとの高効率結合という必要不可欠な性能を保有しており、とりわけ線幅に関しては 0.95 MHz という先行研究と比較して通信波長で最も狭いスペクトル性能を示した。また、90%を超える忠実度の Bell 状態を実現した。開発した通信波長量子光源と波長変換器を用いることで、量子メモリ波長への 2 光子の波長変換に成功し、10 km の光ファイバ伝送後も明瞭な 2光子相関を観測することができた。これは先行研究でも達成されていなかったものであり、量子光源および結合システムの性能を裏付けるものである。更に 2 光子源の出力ミラーの反射率を下げるアプローチを採用することで、2 光子相関の信号雑音比を 1 桁以上改善した。それにより Pr:YSO を用いた原子周波数コム型量子メモリの吸収線幅(~4.6 MHz)を最大限利用することができるようになった。

この論文で使われている画像

参考文献

[1] C. E. Shannon, "A mathematical theory of communication," in The Bell System Technical Journal 27, 3, pp. 379-423 (1948).

[2] T. Maiman, “Stimulated Optical Radiation in Ruby,” Nature 187, 493–494 (1960).

[3] N. Holonyak Jr. and S. F. Bevacqua, "Coherent (Visible) Light Emission from Ga(As1-xPx) Junctions," Appl. Phys. Lett., 1, pp. 82-83 (1962).

[4] K. C. Kao and G. A. Hockham, "Dielectric-fiber surface waveguides for optical frequencies," Proc. IEE 113, 1151-1158 (1966).

[5] R. L. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems”, COMMUNICATION OF THE ACM, 21, 120 (1978).

[6] P. W. shor, “Algorithms for quantum computation: Discrete logarithms and factoring”, IEEE Computer Society 124 (1994).

[7] R. P. Feynman, “Simulating Physics with Computers”, International Journal of Theoretical Physics 21, 467 (1982).

[8] C. E. Shannon, "Communication Theory of Secrecy Systems", Bell System Technical Journal 28, 656 (1949).

[9] C. H. Bennett, G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing”, Proceedings of IEEE International Conference on Computers, 175 (1984).

[10] A. K. Ekert, “Quantum Cryptography Based on Bell's Theorem”, Phys. Rev. Lett. 67, 661 (1991).

[11] C. H. Bennett, "Quantum cryptography using any two nonorthoganol states", Phys. Rev. Lett. 68, 3121 (1992).

[12] C. H. Bennet, G. Brassard and N. D. Mermin, “Quantum Cryptography without Bell's Theorem”, Phys. Rev. Lett. 68, 557 (1992).

[13] K. Inoue, E. Waks and Y. Yamamoto, “Differential phase shift quantum key distribution”, Phys. Rev. Lett. 89, 037902 (2002).

[14] H.-K. Lo, M. Curty, and B. Qi, “Measurement-Device-Independent Quantum Key Distribution”, Physical Review Letters 108, 130503 (2012).

[15] W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and Kae. Nemoto, “Quantum communication without the necessity of quantum memories”, Nature Photonics, 6, 777 (2013).

[16] C. Panayi, M. Razavi, X. Ma and N. Lütkenhaus, “Memory-assisted measurement- device-independent quantum key distribution”, New J. Phys. 16, 043005 (2015).

[17] C. Jones, D. Kim, M. T. Rakher, P. G. Kwiat and T. D. Ladd, “Design and analysis of communication protocols for quantum repeater networks”, New J. Phys. 18, 083015 (2016).

[18] M. Pittaluga, M. Minder, M. Lucamarini, M. Sanzaro, R. I. Woodward, M.-J. Li, Z. Yuan and A. J. Shields, “600-km repeater-like quantum communications with dual- band stabilization”, Nat. Photon. 15, 530–535 (2021).

[19] S.-K. Liao, W.-Q Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J.-G. Ren, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z. Li, J.-F. Wang, Y.-M. Huang, L. Deng,T. Xi, L. Ma, T. Hu, L. Li, N.-L Liu, F. Koidl, P. Wang, Y.-A. Chen, X.-B. Wang, M.Steindorfer, G. Kirchner, C.-Y. Lu, R. Shu, R. Ursin, T. Scheidl, C.-Z. Peng, J.-Y. Wang, A. Zeilinger and J.-W Pan, “Satellite-Relayed Intercontinental Quantum Network”, Phys. Rev. Lett. 120, 030501 (2018).

[20] Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K. Liao, J. Zhang, K. Chen, J. Yin,J.-G. Ren, Z. Chen, S.-L. Han, Q. Yu , K. Liang , F. Zhou , X. Yuan, M.-S. Zhao, T.-Y Wang, X. Jiang, L. Zhang, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, C.-Y. Lu, R. Shu, J.-Y Wang, L. Li, N.-L. Liu, F. Xu, X.-B. Wang, C.-Z. Peng and J.-W. Pan, “An integrated space-to-ground quantum communication network over 4,600 kilometres”, Nature 589, 214–219 (2021).

[21] H.-J. Briegel, W. Dür, J. I. Cirac and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication”, Physical Review Letters 81, 5932 (1998).

[22] M. Zukowski, A. Zeilinger, M. A. Horne and A. K. Ekert, ”"Event-Ready-Detectors" Bell Experiment via Entanglement Swapping”, Physical Review Letters 71, 4287 (1993).

[23] C. H. Bennett, H. J. Bernstein, S Popescu and B. Schumacher, “Concentrating partial entanglement by local operations”, Physical Review A 53, 2046 (1996).

[24] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels”, Phys. Rev. Lett. 76, 722 (1996).

[25] C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference", Phys. Rev. Lett. 59, 2044 (1987).

[26] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin and W. K. Wootters, “Mixed-state entanglement and quantum error correction”, Phys. Rev. A 54, 3824 (1996).

[27] D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels”, Phys. Rev. Lett. 77, 2818 (1996).

[28] W. Dür and H. J. Briegel, "Entanglement purification and quantum error correction", Rep. Prog. Phys. 70 1381 (2007).

[29] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky- Rosen channels”, Phys. Rev. Lett. 70, 1895 (1993).

[30] H. Kimble, “The quantum internet”, Nature 453, 1023–1030 (2008).

[31] B. B. Blinov, D. L. Moehring, L.-M. Duan and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon”, Nature 428, 153– 157 (2004).

[32] J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer and H. Weinfurter, “Observation of Entanglement of a Single Photon with a Trapped Atom”, Phys. Rev. Lett. 96, 030404 (2006).

[33] E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit”, Nature 466, 730–734 (2010).

[34] P. Kumar, "Quantum frequency conversion", Opt. Lett. 15, 1476-1478 (1990).

[35] J. S. Pelc, C. Langrock, Q. Zhang and M. M. Fejer, "Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters", Opt. Lett. 35, 2804-2806 (2010).

[36] K. Inoue and H. Toba, "Wavelength conversion experiment using fiber four-wave mixing", IEEE Photonics Tech. Lett. 4, 1, pp. 69-72, (1992).

[37] A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich and T. A.B. Kennedy, “A quantum memory with telecom-wavelength conversion”, Nature Physics 6, 894–899 (2010).

[38] L.-M. Duan, M. D. Lukin, J. I. Cirac & P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics", Nature 414, pages413– 418 (2001).

[39] N. Sangouard, C. Simon, H. de Riedmatten and N. Gisin, "Quantum repeaters based on atomic ensembles and linear optics" Rev. Mod. Phys. 83, 33 (2011).

[40] B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius and N. Gisin, "Approaches for a quantum memory at telecommunication wavelengths" Phys. Rev. A 83, 012318 (2011).

[41] A. Wallucks, I. Marinković, B. Hensen, R. Stockill and S. Gröblacher, "A quantum memory at telecom wavelengths" Nature Phys. 16, 772 (2020).

[42] C. Latrasse, M. Breton, M. Têtu, N. Cyr, R. Roberge and B. Villeneuve, "C2HD and 13C2H2 absorption lines near 1530 nm for semiconductor-laser frequency locking", Opt. Lett. 19, 1885-1887 (1994).

[43] S. Gerstenkorn, P. Luc, “Atlas du spectre d'absorption de la molecule d'iode: 14 800- 20 000 cm-1”, Paris: Editions de CNRS (1978).

[44] C. Jones, K. D. Greve, and Y. Yamamoto, “A high-speed optical link to entangle quantum dots,” arXiv:1310.4609 (2013).

[45] C. E. Kuklewicz, E. Keskiner, F. N. Wong and J. H. Shapiro, “A high-flux entanglement source based on a doubly resonant optical parametric amplifier”, J. Opt. B: Quantum Semiclass. Opt. 4 S162 (2002).

[46] C. E. Kuklewicz, F. N. Wong and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion”, Phys. Rev. Lett. 97, 223601 (2006).

[47] J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes and E. S. Polzik“High purity bright single photon source”, Opt. Express 15 7940-7949 (2007).

[48] F. Wolfgramm, X. Xing, A. Cere, A. Predojevic, A. M. Steinberg and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs”, Opt. Express 16, 18145- 18151 (2008).

[49] X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang and J.-W. Pan, “Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories”, Phys. Rev. Lett. 101, 190501 (2008).

[50] A. Haase, N. Piro, J. Eschner and M. W. Mitchell "Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction” Opt. Lett. 34, 55-57 (2008).

[51] M. Scholz, L. Koch, R. Ullmann and O. Benson, “Single-mode operation of a high- brightness narrow-band single-photon source”, Appl. Phys. Lett. 94, 201105 (2009).

[52] E. Pomarico, B. Sanguinetti,N. Gisin, R. Thew,H. Zbinden,G. Schreiber, A. Thomas and W. Sohler, “Waveguide-based OPO source of entangled photon pairs”, New J. of Phys. 11, 113042 (2009).

[53] F.-Y. Wang, B.-S. Shi, G.-C. Guo, “Generation of narrow-band photon pairs for quantum memory”, Optics Communications 283, 2974–2977 (2010).

[54] Chih-Sung Chuu, G. Y. Yin and S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons”, Appl. Phys. Lett. 101, 051108 (2012).

[55] M. Förtsch, J. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs and C. Marquardt “A versatile source of single photons for quantum information processing”, Nat. Commun 4, 1818 (2013).

[56] F. Monteiro, A. Martin, B. Sanguinetti, H. Zbinden and R. T. Thew, "Narrowband photon pair source for quantum networks", Opt. Express 22, 4371 (2014).

[57] A. Ahlrichs and O. Benson, “Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing”, Appl. Phys. Lett. 108, 021111 (2016).

[58] D. Rieländer, A. Lenhard, M. Mazzera and H. de Riedmatten, "Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories", New J. Phys. 18, 123013 (2016).

[59] J. Arenskötter, S. Kucera and J. Eschner, "Polarization-Entangled Photon Pairs From a Cavity-Enhanced Down-Conversion Source in Sagnac Configuration", in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America), paper EB_P_21 (2017).

[60] P.-J. Tsai and Y.-C. Chen, "Ultrabright, narrow-band photon-pair source for atomic quantum memories", Quantum Sci. Technol. 3, 034005 (2018).

[61] A. Moqanaki, F. Massa and P. Walther, "Novel single-mode narrow-band photon source of high brightness tuned to cesium D2 line", APL Photonics 4, 090804 (2019).

[62] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information: 10th Anniversary Edition”, Cambridge University Press, ISBN 978-1107002173 (2010).

[63] J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Photonic State Tomography”, Advances in Atomic, Molecular and Optical Physucs 52, 105 (2005).

[64] Amnon Yariv, Pochi Yeh , “光エレクトロニクス基礎編原書 6 版”, 丸善, ISBN 978- 4621082652 (2010).

[65] Amnon Yariv, Pochi Yeh , “光エレクトロニクス展開編原書 6 版”, 丸善, ISBN 978- 4621087770 (2010).

[66] A. E. Siegman, “LASERS”, University Science Books, ISBN 978-0935702118 (1990).

[67] M. Afzelius, C. Simon, H. de Riedmatten and N. Gisin, “Multimode quantum memory based on atomic frequency combs”, Physical Review A 79, 052329 (2009).

[68] D. F. V. James, P. G. Kwiat, W. J Munro and A. G. White, “Measurement of qubits”,Physical Review A 64, 052312 (2001).

[69] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical Resonator”, Applied Physics B 31, 97 (1983).

[70] D. Rieländer, “Quantum light source compatible with solid-state quantum memories and telecom networks”, Ph.D. thesis for Polytechnic University of Catalonia (2016).

[71] H. E. Guilbert and D. J. Gauthier, "Enhancing Heralding Efficiency and Biphoton Rate in Type-I Spontaneous Parametric Down-Conversion", IEEE Journal of Selected Topics in Quantum Electronics 21, pp. 215-224 (2015).

[72] B. Lounis and M. Orrit, "Single-photon sources", Rep. Prog. Phys. 68, 1129 (2005).

[73] H. G. de Chatellus, A. V. Sergienko, B. E. A. Saleh, M. C. Teich and G. D. Giuseppe, "Non-collinear and non-degenerate polarization-entangled photon generation via concurrent type-I parametric downconversion in PPLN", Opt. Express 14, 10060- 10072 (2006).

[74] G. D. Boyd and A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams”, Journal of Applied Physics 39, 3597 (1968).

[75] R. S. Bennink, "Optimal collinear Gaussian beams for spontaneous parametric down-conversion", Phys. Rev. A 81, 053805 (2010).

[76] S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion”, Physical Review A 77, 043807 (2008).

[77] S. Lerch, B. Bessire, C. Bernhard, T. Feurer and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion”, Journal of the Optical Society of America B 30, 953 (2013).

[78] U. Herzog, M. Scholz and O. Benson, "Theory of biphoton generation in a single- resonant optical parametric oscillator far below threshold", Phys. Rev. A 77, 023826 (2008).

[79] Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory”, Physical Review A 62, 033804 (2000).

[80] H. Goto, Y. Yanagihara, H. Wang, T. Horikiri and T. Kobayashi, “Observation of an oscillatory correlation function of multimode two-photon pairs”, Physical Review A 68, 015803 (2003).

[81] M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification”, Physical Review A 30, 1386 (1984).

[82] C.W. Gardiner and C.M. Savage “A multimode quantum theory of a degenerate parametric amplifier in a cavity”, Optics communications 50, 173 (1984).

[83] Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons”, Physical Review Letters 83, 2556 (1999).

[84] Y. Jeronimo-Moreno, S. Rodriguez-Benavides and A.B. U’Ren, “Theory of cavity- enhanced spontaneous parametric down conversion”, Laser Physics 20, 5 (2010).

[85] K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler and C. Silberhorn “Direct generation of genuine single-longitudinal-modenarrowband photon pairs”, New Journal of Physics 17, 073039 (2015).

[86] C.-S. Chuu, G. Y. Yin and S. E. Harris, "A miniature ultrabright source of temporally long, narrowband biphotons", Appl. Phys. Lett. 101, 051108 (2012).

[87] C.-S. Chuu and S. E. Harris, "Ultrabright backward-wave biphoton source", Phys. Rev. A 83, 061803(R) (2011).

[88] P. G. Kwiat, K. Mattle, H. Weinfurter and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs", Phys. Rev. Lett. 75, 4337 (1995).

[89] P. G. Kwiat, Edo Waks, A. G. White,I. Appelbaum and P. H. Eberhard, "Ultrabright source of polarization-entangled photons", Phys. Rev. A 60, R773(R) (1999).

[90] A. V. Burlakov, M. V. Chekhova, O. V. Karabutova, D. N. Klyshko and S. P. Kulik, "Polarization state of a biphoton: quantum ternary logic", Phys. Rev. A. 60, R4209(R) (1999).

[91] Y.-H. Kim, S. P. Kulik and Y. Shih, "High-intensity pulsed source of space-time and polarization double-entangled photon pairs", Phys. Rev. A 62, 011802(R) (2000).

[92] H. Wang, T. Horikiri and T. Kobayashi, "Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion", Phys. Rev. A 70, 043804 (2004).

[93] F. Steinlechner, M. Gilaberte, M. Jofre, T. Scheidl, J. P. Torres, V. Pruneri and R. Ursin, "Efficient heralding of polarization-entangled photons from type-0 and type- II spontaneous parametric downconversion in periodically poled KTiOPO4," J. Opt. Soc. Am. B 31, 2068-2076 (2014).

[94] R. V. Roussev, C. Langrock, J. R. Kurz and M. M. Fejer, "Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths", Opt. Lett. 29, 1518-1520 (2004).

[95] C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto and M. M. Fejer, "Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides", Opt. Lett. 30, 1725 (2005).

[96] P. C. Strassmann, A. Martin, N. Gisin and M. Afzelius, "Spectral noise in frequency conversion from the visible to the telecommunication C-band", Opt. Express 27, 14298 (2019).

[97] J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang and M.M. Fejer, "Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis," Opt. Express 19, 21445 (2011).

[98] K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie and T. Horikiri, "Two-photon comb with wavelength conversion and 20-km distribution for quantum communication", Commun. Phys. 3, 138 (2020).

[99] O. Slattery, L. Ma, K. Zong, X. Tang, "Background and Review of Cavity-Enhanced Spontaneous Parametric Down-Conversion", J. Res. Natl. Inst. Stan. 124, 124019 (2019).

[100] M. Scholz, L. Koch and O. Benson, "Analytical treatment of spectral properties and signal–idler intensity correlations for a double-resonant optical parametric oscillator far below threshold", Optics Communications 282,3518 (2009).

[101] K. R. Ferguson, "Generation and storage of optical entanglement in a solid state spin-wave quantum memory", Ph.D. Thesis for The Australian National University (2016).

[102] J. Fekete, D. Rieländer, M. Cristiani and H. de Riedmatten, “Ultranarrow-Band Photon-Pair Source Compatible with Solid State Quantum Memories and Telecommunication Networks”, Physical Review Letters 110, 220502 (2013).

[103] Z.-Y. Zhou, D.-S. Ding, Y. Li, F.-Y. Wang and B.-S. Shi, “Cavity-enhanced bright photon pairs at telecom wavelengths with a triple-resonance configuration”, J. Opt. Soc. Am. B 31, 128-134 (2014).

[104] K. Liao, H. Yan, J. He, S. Du, Z.-M. Zhang and S.-L. Zhu, “Subnatural-Linewidth Polarization-Entangled Photon Pairs with Controllable Temporal Length”, Phys. Rev. Lett. 112, 243602 (2014).

[105] L. Tian, S. Li, H. Yuan and H. Wang, “Generation of Narrow-Band Polarization- Entangled Photon Pairs at a Rubidium D1 Line”, J. Phys. Soc. Jpn. 85, 124403 (2016).

[106] M. Rambach, A. Nikolova, T. J. Weinhold and A. G. White, “Sub-megahertz linewidth single photon source”, APL Photonics 1, 096101 (2016).

[107] J. Wang, Y.-F. Huang, C. Zhang, J.-M. Cui, Z.-Y. Zhou, B.-H. Liu, Z.-Q. Zhou, J.-S. Tang, C.-F. Li and G.-C. Guo, “Universal Photonic Quantum Interface for a Quantum Network”, Phys. Rev. Appl. 10, 054036 (2018).

[108] R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, T. Yamamoto and N. Imoto, "Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network", Nat Commun 9, 1997 (2018).

[109] C. Clausen, F. Bussières, M. Afzelius and N. Gisin, "Quantum Storage of Heralded Polarization Qubits in Birefringent and Anisotropically Absorbing Materials", Phys. Rev. Lett. 108, 190503 (2012).

[110] T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J.Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li and G.-C. Guo, “Multiplexed storage and real- time manipulation based on a multiple degree-of-freedom quantum memory”, Nature Communications 9, 3407 (2018).

[111] P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin and M. Afzelius, “Towards highly multimode optical quantum memory for quantum repeaters”, Physycal Review A 93, 032327 (2016).

[112] B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R.M. Macfarlane, R. L. Cone, “Spectroscopic investigations of Eu3+:Y2SiO5 for quantum memory applications”, Physical Review B 85, 115111 (2012).

[113] E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre”, Nature Photonics 9, 83 (2015).

[114] M. F. Askarani, M. li G. Pugibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam,N. Sinclair, D. Oblak and W. Tittel, “Storage and retrieval of heralded telecommunication-wavelength photons using a solid-state waveguide quantum memory”, arXiv:1804.05699v1 (2018).

[115] N. Sinclair, K. Heshami, C. Deshmukh, D. Oblak, C. Simon and W. Tittel, “Proposal and proof-of-principle demonstration of non-destructive detection of photonic qubits using a Tm:LiNbO3 waveguide”, Nature Communications 7, 13454 (2016).

[116] E. Z. Cruzeiro, A. Tiranov, J. Lavoie, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Efficient optical pumping using hyperfine levels in 145Nd3+:Y2SiO5 and its application to optical storage”, New Journal of Physics 20, 053013 (2018).

[117] M. P. Hedges, "High performance solid state quantum memory", Ph.D. Thesis for The Australian National University (2011).

[118] Mustafa Gündŏgan, “Solid-State Quantum Memory for Photonic Qubits”, Ph.D. thesis for Universitat Politècnica de Catalunya (2015).

[119] K. Kutluer, “Quantum Memory Protocols for Photonic Solid-State Devices”, Ph.D. thesis for Universitat Politècnica de Catalunya (2017).

[120] M. Lovrić, “Hyperfine characterisation and enhanced optical to spin storage in rare earth ion doped crystals”, Ph.D. thesis for Technische Universität Dortmund (2011).

[121] R. W. Equall, R. L. Cone and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5”, Physical Review B 52, 3963 (1995).

[122] M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin and S. Kröll, “Demonstration of Atomic Frequency Comb Memory for Light with Spin-Wave Storage”, Physical Review Letters 104, 040503 (2010).

[123] M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S.E. Beavan, S.M. Wittig, J.J. Longdell and M.J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time”, Nature 517, 177 (2015).

[124] Mustafa Gündoğan, “Solid-State Quantum Memory for Photonic Qubits”, Ph.D.thesis for Universitat Politècnica de Catalunya (2015).

[125] N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken,M. P. Hedges, D. Oblak, C. Simon, W. Sohler and W. Tittel, “Spectral Multiplexing for Scalable Quantum Photonics using an Atomic Frequency Comb Quantum Memory and Feed-Forward Control”, Physical Review Letters 113, 053603 (2014).

[126] M. Avenhaus, A. Eckstein, P. J. Mosley and C. Silberhorn, "Fiber-assisted single- photon spectrograph", Opt. Lett. 34, 2873 (2009).

[127] C.-H. Wu, C.-K. Liu, Y.-C. Chen and C.-S. Chuu, "Revival of Quantum Interference by Modulating the Biphotons", Phys. Rev. Lett. 123, 143601 (2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る