リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「β-Arrestin-Biased AT1 Agonist TRV027 Causes a Neonatal-Specific Sustained Positive Inotropic Effect Without Increasing Heart Rate」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

β-Arrestin-Biased AT1 Agonist TRV027 Causes a Neonatal-Specific Sustained Positive Inotropic Effect Without Increasing Heart Rate

Kashihara, Toshihide Kawagishi, Hiroyuki Nakada, Tsutomu Numaga-Tomita, Takuro Kadota, Shin Wolf, Elena E. Du, Cheng-Kun Shiba, Yuji Morimoto, Sachio Yamada, Mitsuhiko 信州大学 DOI:33294739

2022.12.01

概要

The treatment of pediatric heart failure is a long-standing unmet medical need. Angiotensin II supports mammalian perinatal circulation by activating cardiac L-type Ca2+ channels through angiotensin type 1 receptor (AT1R) and β-arrestin. TRV027, a β-arrestin-biased AT1R agonist, that has been reported to be safe but not effective for adult patients with heart failure, activates the AT1R/β-arrestin pathway. We found that TRV027 evokes a long-acting positive inotropic effect specifically on immature cardiac myocytes through the AT1R/β-arrestin/L-type Ca2+ channel pathway with minimum effect on heart rate, oxygen consumption, reactive oxygen species production, and aldosterone secretion. Thus, TRV027 could be utilized as a valuable drug specific for pediatric heart failure.

この論文で使われている画像

参考文献

1. Hinton RB, Ware SM. Heart failure in pediatric patients with congenital heart disease. Circ Res 2017;120:978–94.

2. Eisner DA, Caldwell JL, Kistamas K, Trafford AW. Calcium and excitation-contraction coupling in the heart. Circ Res 2017;121:181–95.

3. Friedman AH, Fahey JT. The transition from fetal to neonatal circulation: normal responses and implications for infants with heart disease. Semin Perinatol 1993;17:106–21.

4. Hong T, Shaw RM. Cardiac T-tubule microanatomy and function. Physiol Rev 2017;97: 227–52.

5. Robinson RB. Autonomic receptor–effector coupling during post-natal development. Cardiovasc Res 1996;31 Spec No:E68–76.

6. Docherty JR. The pharmacology of alpha1- adrenoceptor subtypes. Eur J Pharmacol 2019; 855:305–20.

7. Frolich S, Slattery P, Thomas D, et al. Angiotensin II-AT1-receptor signaling is necessary for cyclooxygenase-2-dependent postnatal nephron generation. Kidney Int 2017;91:818–29.

8. Stubbe J, Jensen BL, Bachmann S, Morsing P, Skott O. Cyclooxygenase-2 contributes to elevated renin in the early postnatal period in rats. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1179–89.

9. Heymann MA, Iwamoto HS, Rudolph AM. Factors affecting changes in the neonatal systemic circulation. Annu Rev Physiol 1981;43: 371–83.

10. Forrester SJ, Booz GW, Sigmund CD, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev 2018;98:1627–738.

11. Kashihara T, Nakada T, Kojima K, Takeshita T, Yamada M. Angiotensin II activates CaV 1.2 Ca(2þ) channels through beta-arrestin2 and casein kinase 2 in mouse immature cardiomyocytes. J Physiol 2017;595:4207–25.

12. Shukla AK, Xiao K, Lefkowitz RJ. Emerging paradigms of beta-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci 2011;36:457–69.

13. Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW. Endosomes: a legitimate platform for the signaling train. Proc Natl Acad Sci U S A 2009;106:17615–22.

14. Violin JD, DeWire SM, Yamashita D, et al. Selectively engaging beta-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther 2010;335:572–9.

15. Kim KS, Abraham D, Williams B, Violin JD, Mao L, Rockman HA. beta-Arrestin-biased AT1R stimulation promotes cell survival during acute cardiac injury. American journal of physiology Heart Circ Physiol 2012;303:H1001–10.

16. Boerrigter G, Lark MW, Whalen EJ, Soergel DG, Violin JD, Burnett JC Jr. Cardiorenal actions of TRV120027, a novel b-arrestin-biased ligand at the angiotensin II type I receptor, in healthy and heart failure canines: a novel therapeutic strategy for acute heart failure. Circ Heart Fail 2011;4: 770–8.

17. Boerrigter G, Soergel DG, Violin JD, Lark MW, Burnett JC Jr. TRV120027, a novel beta-arrestin biased ligand at the angiotensin II type I receptor, unloads the heart and maintains renal function when added to furosemide in experimental heart failure. Circ Heart Fail 2012;5:627–34.

18. Pang PS, Butler J, Collins SP, et al. Biased ligand of the angiotensin II type 1 receptor in patients with acute heart failure: a randomized, double-blind, placebo-controlled, phase IIB, dose ranging trial (BLAST-AHF). Eur Heart J 2017;38: 2364–73.

19. Yoshida Y, Yamanaka S. Induced Pluripotent Stem Cells 10 Years Later For Cardiac Applications. Circ Res 2017;120:1958–68.

20. Nonaka M, Morimoto S, Murayama T, et al. Stage-dependent benefits and risks of pimobendan in mice with genetic dilated cardiomyopathy and progressive heart failure. Brit J Pharmacol 2015;172:2369–82.

21. Pachon RE, Scharf BA, Vatner DE, Vatner SF. Best anesthetics for assessing left ventricular systolic function by echocardiography in mice. Am J Physiol Heart Circ Physiol 2015;308:H1525–9.

22. Du CK, Morimoto S, Nishii K, et al. Knock-in mouse model of dilated cardiomyopathy caused by troponin mutation. Circ Res 2007;101:185–94.

23. Mitchell GF, Jeron A, Koren G. Measurement of heart rate and Q-T interval in the conscious mouse. Am J Physiol 1998;274:H747–51.

24. Fridericia LS. Die Systolendauer im Elektrokardiogramm bei normalen Menschen und bei Herzkranken. Acta Med Scand 1920;53:469–86.

25. Wang Q, Zou MH. Measurement of reactive oxygen species (ROS) and mitochondrial ROS in AMPK knockout mice blood vessels. Methods Mol Biol 2018;1732:507–17.

26. Ackers-Johnson M, Li PY, Holmes AP, O’Brien SM, Pavlovic D, Foo RS. A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ Res 2016;119: 909–20.

27. Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008;26:101–6.

28. Kadota S, Pabon L, Reinecke H, Murry CE. In vivo maturation of human induced pluripotent stem cell-derived cardiomyocytes in neonatal and adult rat hearts. Stem Cell Rep 2017;8:278–89.

29. Ogasawara T, Okano S, Ichimura H, et al. Impact of extracellular matrix on engraftment and maturation of pluripotent stem cell-derived cardiomyocytes in a rat myocardial infarct model. Sci Rep 2017;7:8630.

30. Shiba Y, Gomibuchi T, Seto T, et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 2016;538: 388–91.

31. Piacentino V 3rd, Weber CR, Chen X, et al. Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res 2003;92:651–8.

32. Liu CH, Gong Z, Liang ZL, et al. Arrestin-biased AT1R agonism induces acute catecholamine secretion through TRPC3 coupling. Nat Commun 2017;8:14335.

33. Lymperopoulos A, Rengo G, Zincarelli C, Kim J, Soltys S, Koch WJ. An adrenal beta-arrestin 1- mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo. Proc Natl Acad Sci U S A 2009;106: 5825–30.

34. Suga H. Ventricular energetics. Phys Rev 1990;70:247–77.

35. Cheung JY, Gordon J, Wang J, et al. Mitochondrial dysfunction in human immunodeficiency virus-1 transgenic mouse cardiac myocytes. J Cell Physiol 2019;234:4432–44.

36. Jafri MS, Dudycha SJ, O’Rourke B. Cardiac energy metabolism: models of cellular respiration. Annu Rev Biomed Eng 2001;3:57–81.

37. Zhang J, Xiao H, Shen J, Wang N, Zhang Y. Different roles of beta-arrestin and the PKA pathway in mitochondrial ROS production induced by acute beta-adrenergic receptor stimulation in neonatal mouse cardiomyocytes. Biochem Biophys Res Commun 2017;489:393–8.

38. Qi C, Shao Y, Liu X, Wang D, Li X. The cardioprotective effects of icariin on the isoprenalineinduced takotsubo-like rat model: Involvement of reactive oxygen species and the TLR4/NF-kappaB signaling pathway. Int Immunopharmacol 2019; 74:105733.

39. Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y. Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res 1983;53:306–18.

40. Kantor PF, Mertens LL. Clinical practice: heart failure in children. Part I: clinical evaluation, diagnostic testing, and initial medical management. Eur J Pediatr 2010;169:269–79.

41. Bers DM. Cardiac inotropy and Ca mismanagement, Excitation-Contraction Coupling and Cardiac Contractile Force. Dordrecht, the Netherlands: Springer, 2008:273–331.

42. Ahn S, Kim J, Hara MR, Ren XR, Lefkowitz RJ. {beta}-Arrestin-2 mediates anti-apoptotic signaling through regulation of BAD phosphorylation. J Biol Chem 2009;284:8855–65.

43. Soergel DG, Subach RA, Cowan CL, Violin JD, Lark MW. First clinical experience with TRV027: pharmacokinetics and pharmacodynamics in healthy volunteers. J Clin Pharmacol 2013;53: 892–9.

44. Toth DJ, Toth JT, Gulyas G, et al. Acute depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate impairs specific steps in endocytosis of the G-protein-coupled receptor. J Cell Sci 2012;125:2185–97.

45. Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS. Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein– coupled receptors delineate two major classes of receptors. J Biol Chem 2000;275:17201–10.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る