リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mechanical role of spear-shaped collagen crystals in the caudal fin formation of zebrafish」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mechanical role of spear-shaped collagen crystals in the caudal fin formation of zebrafish

中川, 日々紀 大阪大学 DOI:10.18910/88167

2022.03.24

概要

Zebrafish show a V-shaped caudal fin, with 17 to 18 fin-bones (fin-rays) extending from proximal to distal. Each fin-ray is composed of dozens of repeating segments, which are added distally to elongate the fin-ray and branch in the distal part of fins. However, the fin-rays only extend to the front of the leading edge of the fin growth, beyond which there are no fin-rays, but spear-shaped collagen crystals called actinotrichia. Although previous studies have shown that actinotrichia are essential for fin development and regeneration, their specific role in fin formation has not been clarified. In this study, I aimed to elucidate the role of the orderly arrangement of actinotrichia at the distal tip of the fin in zebrafish fin formation.

Firstly, I identified the collagen9a1c (col9a1c) gene that was presumed to be involved in the actinotrichia arrangement to generate mutants with the disturbed alignment of actinotrichia in the fin. I then generated co9a1c-knockout zebrafish using the CRISPR/Cas9 system and observed their phenotypes during growth. As a result, I found that the knockout fins shrank in the dorsoventral axis as the fish grew. The abnormality in the fins became more pronounced around three weeks of age, when the fin-rays began to form.

Next, I performed a quantitative analysis of the fin and fin-rays phenotypes in six categories to obtain a more detailed understanding of them. The phenotypes in which significant differences were observed in the col9a1c-knockout mutant compared with the wild-type were the following four: decrease in the fin length in the dorsoventral axis, decrease in the segment length of fin- rays, decrease the number of fin-rays at the distal part of the fin, and decrease in the branching frequency of fin-rays. This indicates that the deletion of col9a1c significantly affects the fin and fin-ray phenotypes.

I then observed the arrangement of actinotrichia using the transgenic zebrafish in which actinotrichia were visualized. I found that actinotrichia were initially produced normally and aligned correctly in the col9a1c-knockout mutant, but as the fish grew, the number of actinotrichia decreased, and their arrangement became disordered, just as the abnormalities in the fin shape appeared with growth. Moreover, actinotrichia were usually aligned without gaps at the distal fin tip to form a thin two-dimensional plane. In contrast, actinotrichia were sparsely arranged in the knockout mutant, suggesting that cells adjacent to actinotrichia lost mechanical support at the fin tip.

Finally, to investigate the physical impact of the loss of orderly actinotrichia arrangement on the surrounding cells, I observed the shape of the two epidermal cells—peridermal cells and basal keratinocytes—at the fin tip and thickness of the tissue. Similar to the phenotype of the fin shape and the actinotrichia arrangement, there were no significant changes in the cells shape or the tissue thickness in the col9a1c-knockout mutant at 5-day-old, but markedly differences in them appeared at 3-week-old fish. The size of the superficial cell was reduced by about half, and that of the basal keratinocytes was decreased by about one-third. In addition, the basal keratinocytes, which are normally thinly spread, were spherical in the knockout mutant. Furthermore, the thickness of the tissue was doubled toward the distal fin tip.

These results suggest that the orderly arrangement of the actinotrichia at the fin tip provides a physical scaffold for epidermal cells and tissue to spread thinly and for the fin to grow in the dorsoventral direction.

参考文献

Acuna, Andrea et al. (2018). “Three-dimensional visualization of extracellular matrix net- works during murine development”. In: Developmental Biology December 2017, pp. 1–8. issn: 00121606. doi: 10.1016/j.ydbio.2017.12.022. url: http://linkinghub. elsevier.com/retrieve/pii/S0012160617305432.

Akimenko, Marie Andrée et al. (2003). “Old questions, new tools, and some answers to the mys- tery of fin regeneration”. In: Developmental Dynamics 226.2, pp. 190–201. issn: 10588388. doi: 10.1002/dvdy.10248.

Aouacheria, Abdel et al. (2006). “Insights into early extracellular matrix evolution: Spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates”. In: Molecular Biology and Evolution 23.12, pp. 2288–2302. issn: 07374038. doi: 10.1093/molbev/msl100.

Becerra, J. et al. (1996). “Regeneration of fin rays in teleosts: A histochemical, radioautographic,and ultrastructural study”. In: Archives of Histology and Cytology. issn: 09149465. doi:10.1679/aohc.59.15.

Bedell, Mary A. et al. (1997). “Mouse models of human disease. Part II: Recent progress and future directions”. In: Genes and Development 11.1, pp. 11–43. issn: 08909369. doi: 10.1101/gad.11.1.11.

Bhadra, Joyita and M. Kathryn Iovine (2015). “Hsp47 mediates Cx43-dependent skeletal growth and patterning in the regenerating fin”. In: Mechanisms of Development 138, pp. 364–374. issn: 18726356. doi: 10.1016/j.mod.2015.06.004. url: http://dx.doi.org/10. 1016/j.mod.2015.06.004.

Blanton, Richard L. et al. (2000). “The cellulose synthase gene of Dictyostelium”. In: Proceed- ings of the National Academy of Sciences of the United States of America 97.5, pp. 2391– 2396. issn: 00278424. doi: 10.1073/pnas.040565697.

Böckelmann, PK. and IJ. Bechara (2009). “The regeneration of the tail fin actinotrichia of carp (Cyprinus carpio, Linnaeus, 1758) under the action of naproxen”. In: Brazilian Journal of Bi- ology 69.4, pp. 1165–1172. issn: 1678-4375. doi: 10.1590/s1519-69842009000500022.

Boisvert, Catherine A., Elga Mark-Kurik, and Per E. Ahlberg (2008). “The pectoral fin of Panderichthys and the origin of digits”. In: Nature 456.7222, pp. 636–638. issn: 00280836. doi: 10.1038/nature07339.

Bryan, Chase D., Chi Bin Chien, and Kristen M. Kwan (2016). “Loss of laminin alpha 1 results in multiple structural defects and divergent effects on adhesion during vertebrate optic cup morphogenesis”. In: Developmental Biology 416.2, pp. 324–337. issn: 1095564X. doi:10.1016/j.ydbio.2016.06.025. url: http://dx.doi.org/10.1016/j.ydbio. 2016.06.025.

Budde, B. et al. (2005). “Altered Integration of Matrilin-3 into Cartilage Extracellular Matrix in the Absence of Collagen IX”. In: Molecular and Cellular Biology 25.23, pp. 10465– 10478. issn: 0270-7306. doi: 10.1128/MCB.25.23.10465-10478.2005. url: http://mcb.asm.org/cgi/doi/10.1128/MCB.25.23.10465-10478.2005.

Budney, L. A. and B. K. Hall (2010). “Comparative morphology and osteology of pelvic fin-derived midline suckers in lumpfishes, snailfishes and gobies”. In: Journal of Applied Ichthyology 26.2, pp. 167–175. issn: 01758659. doi: 10.1111/j.1439-0426.2010. 01398.x.

Charvet, Benjamin et al. (2013). “Knockdown of col22a1 gene in zebrafish induces a muscu- lar dystrophy by disruption of the myotendinous junction”. In: Development (Cambridge) 140.22, pp. 4602–4613. issn: 09501991. doi: 10.1242/dev.096024.

Chiachien, Jake Wang et al. (2008). “Trabecular bone deterioration in col9a1+/- mice associated with enlarged osteoclasts adhered to collagen IX-deficient bone”. In: Journal of Bone and Mineral Research 23.6, pp. 837–849. issn: 08840431. doi: 10.1359/jbmr.080214.

Cloutier, Richard et al. (2020). “Elpistostege and the origin of the vertebrate hand”. In: Nature 579.7800, pp. 549–554. issn: 14764687. doi: 10.1038/s41586-020-2100-8.

Dane, P. J. and J. B. Tucker (1985). “Modulation of epidermal cell shaping and extracellular matrix during caudal fin morphogenesis in the zebra fish Brachydanio rerio.” In: Journal of Embryology and Experimental Morphology 87, pp. 145–161. issn: 00220752.

Dijk, D E Van (1960). “Periophthalmus, e.” In.Don, Emily K., Peter D. Currie, and Nicholas J. Cole (2013). “The evolutionary history of the development of the pelvic fin/hindlimb”. In: Journal of Anatomy 222.1, pp. 114–133. issn: 00218782. doi: 10.1111/j.1469-7580.2012.01557.x.

Dunn, Joe Dan et al. (2018). “Eat prey, live: Dictyostelium discoideum as a model for cell- autonomous defenses”. In: Frontiers in Immunology 8.JAN. issn: 16643224. doi: 10.3389/ fimmu.2017.01906.

Durán, I. et al. (2011). “Actinotrichia collagens and their role in fin formation”. In: Developmental Biology 354.1, pp. 160–172. issn: 1095564X. doi: 10.1016/j.ydbio.2011.03.014. url: http://dx.doi.org/10.1016/j.ydbio.2011.03.014.

Ehrlich, Hermann et al. (2018). “Collagens of poriferan origin”. In: Marine Drugs 16.3, pp. 1–21. issn: 16603397. doi: 10.3390/md16030079.

Exposito, Jean Yves et al. (2002). “Evolution of collagens”. In: Anatomical Record 268.3,pp. 302–316. issn: 0003276X. doi: 10.1002/ar.10162.

Eyre, David R. et al. (2004). “Covalent Cross-linking of the NC1 Domain of Collagen Type IX to Collagen Type II in Cartilage”. In: Journal of Biological Chemistry 279.4, pp. 2568–2574. issn: 00219258. doi: 10.1074/jbc.M311653200.

Feitosa, Natália Martins et al. (2012). “Hemicentin 2 and Fibulin 1 are required for epidermal- dermal junction formation and fin mesenchymal cell migration during zebrafish develop- ment”. In: Developmental Biology 369.2, pp. 235–248. issn: 1095564X. doi: 10.1016/j. ydbio.2012.06.023.

Fidler, Aaron L et al. (2017). “Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues”. In: eLife 6, pp. 1–24. issn: 2050-084X. doi: 10.7554/elife.24176. Fidler, Aaron L. et al. (2018). “The triple helix of collagens - An ancient protein structure that enabled animal multicellularity and tissue evolution”. In: Journal of Cell Science 131.7.issn: 14779137. doi: 10.1242/jcs.203950.

Firner, Sara et al. (2017). “Extracellular Distribution of Collagen II and Perifibrillar Adapter Proteins in Healthy and Osteoarthritic Human Knee Joint Cartilage”. In: Journal of His-tochemistry and Cytochemistry 65.10, pp. 593–606.0022155417729154.issn: 15515044. doi: 10 . 1369 /

Franzke, Claus Werner, Peter Bruckner, and Leena Bruckner-Tuderman (2005). “Collagenous transmembrane proteins: Recent insights into biology and pathology”. In: Journal of Biolog- ical Chemistry 280.6, pp. 4005–4008. issn: 00219258. doi: 10.1074/jbc.R400034200. url: http://dx.doi.org/10.1074/jbc.R400034200.

Funayama, Noriko et al. (2005). “Isolation of the choanocyte in the fresh water sponge, Ephydatia fluviatilis and its lineage marker, Ef annexin”. In: Development Growth and Differentiation 47.4, pp. 243–253. issn: 00121592. doi: 10.1111/j.1440-169X.2005.00800.x.

Géraudie, Jacqueline (1977). “Initiation of the actinotrichial development in the early fin bud of the fish, Salmo”. In: Journal of Morphology 151.3, pp. 353–361. issn: 10974687. doi:10.1002/jmor.1051510304.

Hale, Melina E. et al. (2006). “Pectoral fin coordination and gait transitions in steadily swimming juvenile reef fishes”. In: Journal of Experimental Biology 209.19, pp. 3708–3718. issn: 00220949. doi: 10.1242/jeb.02449.

Hall, Brian K (2007). Fins into limbs: evolution, development, and transformation. University of Chicago Press.

Harada, Mariko, Eiichi Tajika, and Yasuhito Sekine (2015). “Transition to an oxygen-rich atmo- sphere with an extensive overshoot triggered by the Paleoproterozoic snowball Earth”. In: Earth and Planetary Science Letters 419, pp. 178–186. issn: 0012821X. doi: 10.1016/j. epsl.2015.03.005. url: http://dx.doi.org/10.1016/j.epsl.2015.03.005.

Hoffman, Paul F. and Daniel P. Schrag (2002). “The snowball Earth hypothesis: Testing the limits of global change”. In: Terra Nova 14.3, pp. 129–155. issn: 09544879. doi: 10.1046/ j.1365-3121.2002.00408.x.

Hoffman, Paul F. et al. (1998). “A neoproterozoic snowball earth”. In: Science 281.5381,pp. 1342–1346. issn: 00368075. doi: 10.1126/science.281.5381.1342.

Huang, Cheng chen et al. (2009). “Collagen IX is required for the integrity of collagen II fibrils and the regulation of vascular plexus formation in Zebrafish caudal fins”. In: DevelopmentalBiology 332.2, pp. 360–370. issn: 1095564X. doi: 10.1016/j.ydbio.2009.06.003. arXiv: NIHMS150003.

Hwang, Woong Y. et al. (2013). “Efficient genome editing in zebrafish using a CRISPR-Cas system”. In: Nature Biotechnology 31.3, pp. 227–229. issn: 10870156. doi: 10.1038/nbt. 2501. url: http://dx.doi.org/10.1038/nbt.2501.

Kemp, Norman E. and Jae Ho Park (1970). “Regeneration of lepidotrichia and actinotrichia in the tailfin of the teleostTilapia mossambica”. In: Developmental Biology 22.2, pp. 321–342. issn: 00121606. doi: 10.1016/0012-1606(70)90157-0.

King, Nicole et al. (2008). “The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans”. In: Nature 451.7180, pp. 783–788. issn: 14764687. doi: 10.1038/ nature06617.

Kirschvink, J L (1992). “Late Proterozoic low-latitude global glaciation: the snowball Earth ”.In: The Proterozoic Biosphere 52, pp. 51–52. issn: 0521366151.

Kirschvink, Joseph L. et al. (2000). “Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences”. In: Proceedings of the National Academy of Sciences of the United States of America 97.4, pp. 1400–1405. issn: 00278424. doi: 10.1073/pnas.97.4.1400.

König, Désirée et al. (2018). “Dynamics of actinotrichia regeneration in the adult zebrafish fin”. In: Developmental Biology 433.2, pp. 416–432. issn: 1095564X. doi: 10.1016/j.ydbio. 2017.07.024.

Koseki, Yusuke, Keisuke Takata, and Koji Maekawa (2000). “The role of the anal fin in fertil- ization success in male medaka, Oryzias latipes”. In: Fisheries Science 66.4, pp. 633–635. issn: 09199268. doi: 10.1046/j.1444-2906.2000.00103.x.

Kruger, Thomas E., Andrew H. Miller, and Jinxi Wang (2013). “Collagen scaffolds in bone sialoprotein-mediated bone regeneration”. In: The Scientific World Journal 2013.I. issn: 1537744X. doi: 10.1155/2013/812718.

Kuroda, Junpei, Atsuko H. Iwane, and Shigeru Kondo (2018). “Roles of basal keratinocytes in actinotrichia formation”. In: Mechanisms of Development 153, pp. 54–63. doi: 10.1016/ j.mod.2018.08.010.

Kuroda, Junpei et al. (2020). “The Physical Role of Mesenchymal Cells Driven by the Actin Cytoskeleton Is Essential for the Orientation of Collagen Fibrils in Zebrafish Fins”. In: Frontiers in Cell and Developmental Biology 8.October, pp. 1–16. issn: 2296634X. doi: 10.3389/fcell.2020.580520.

Lalonde, Robert L. and Marie Andrée Akimenko (2018). “Effects of fin fold mesenchyme ablation on fin development in zebrafish”. In: PLoS ONE 13.2, pp. 1–25. issn: 19326203. doi: 10.1371/journal.pone.0192500.

Lamason, Rebecca L et al. (2005). “Esearch rticle”. In: December, pp. 1782–1787.

Lauder, George V. (2000). “Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns”. In: American Zoologist 40.1, pp. 101–122. issn: 00031569. doi: 10.1093/icb/40.1.101.

Lauder, George V. and Eliot G. Drucker (2004). “Morphology and experimental hydrodynamics of fish fin control surfaces”. In: IEEE Journal of Oceanic Engineering 29.3, pp. 556–571. issn: 03649059. doi: 10.1109/JOE.2004.833219.

Lauder, George V., Jennifer C. Nauen, and Eliot G. Drucker (2002). “Experimental hydrody- namics and evolution: Function of median fins in ray-finned fishes”. In: Integrative and Com- parative Biology 42.5, pp. 1009–1017. issn: 00031569. doi: 10.1093/icb/42.5.1009.

Lee, Raymond T.H., P. V. Asharani, and Thomas J. Carney (2014). “Basal keratinocytes con-tribute to all strata of the adult zebrafish epidermis”. In: PLoS ONE 9.1. issn: 19326203. doi: 10.1371/journal.pone.0084858.

Long, John A. and Richard Cloutier (2020). How a 380-Milion-Year-Old Fish Gave Us Fingers. url: https://www.scientificamerican.com/article/how- a- 380- million- year-old-fish-gave-us-fingers/.

Makareeva, Elena et al. (2008). “Structural heterogeneity of type I collagen triple helix and its role in osteogenesis imperfecta”. In: Journal of Biological Chemistry 283.8, pp. 4787–4798. issn: 00219258. doi: 10.1074/jbc.M705773200. url: http://dx.doi.org/10.1074/ jbc.M705773200.

Mari-Beffa, M., M. C. Carmona, and J. Becerra (1989). “Elastoidin turn-over during tail fin regeneration in teleosts - A morphometric and radioautographic study”. In: Anatomy and Embryology 180.5, pp. 465–470. issn: 03402061. doi: 10.1007/BF00305121.

Martínez, Paula Tapial, Pilar López Navajas, and Daniel Lietha (2020). “FAK Structure and Regulation by Membrane Interactions and Force in Focal Adhesions”. In: Biomolecules10.2. issn: 2218273X. doi: 10.3390/biom10020179.

Massenlink, W. (2016). How fish grew limbs and moved onto land. url: https://thenode.biologists.com/fish-grew-limbs-moved-onto-land/research/.

Mitra, Satyajit K., Daniel A. Hanson, and David D. Schlaepfer (2005). “Focal adhesion kinase: In command and control of cell motility”. In: Nature Reviews Molecular Cell Biology 6.1,pp. 56–68. issn: 14710072. doi: 10.1038/nrm1549.

Mizuno, Kazunori (2020). Collagen: from basics to applications. Ed. by Scleroprotein, Faculty of Agriculture National University Corporation Tokyo University of Agriculture Leather Research Institute, and Technology. Impress RD.

Nakayama, Sohei et al. (2015). “Dynamic transport and cementation of skeletal elements build up the pole-and-beam structured skeleton of sponges”. In: Current Biology 25.19, pp. 2549– 2554. issn: 09609822. doi: 10.1016/j.cub.2015.08.023. url: http://dx.doi.org/ 10.1016/j.cub.2015.08.023.

Nikaido, Masato et al. (2013). “Coelacanth genomes reveal signatures for evolutionary transition from water to land”. In: Genome Research 23.10, pp. 1740–1748. issn: 10889051. doi: 10.1101/gr.158105.113.

Peng, Jifeng et al. (2007). “Non-invasive measurement of instantaneous forces during aquatic locomotion: A case study of the bluegill sunfish pectoral fin”. In: Journal of Experimental Biology 210.4, pp. 685–698. issn: 00220949. doi: 10.1242/jeb.02692.

Pfefferli, Catherine and Anna Jaźwińska (2015). “The art of fin regeneration in zebrafish”. In:Regeneration 2.2, pp. 72–83. doi: 10.1002/reg2.33.

Phan, Hue Eileen et al. (2019). “Differential actinodin1 regulation in embryonic development and adult fin regeneration in Danio rerio”. In: PLoS ONE 14.5, pp. 1–25. issn: 19326203. doi: 10.1371/journal.pone.0216370.

Poss, Kenneth D. et al. (2000). “Roles for Fgf signaling during zebrafish fin regeneration”. In:Developmental Biology 222.2, pp. 347–358. issn: 00121606. doi: 10.1006/dbio.2000.9722.

Santamaría, J A and J Becerra (1991). “Tail fin regeneration in teleosts: cell-extracellular matrix interaction in blastemal differentiation.” In: Journal of anatomy 176, pp. 9–21. issn: 0021-8782. url: http://www.ncbi.nlm.nih.gov/pubmed/1917678%0A http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1260309.

Shibata, Eri et al. (2018). “Robust and local positional information within a fin ray directs fin length during zebrafish regeneration”. In: Development Growth and Differentiation 60.6,pp. 354–364. issn: 1440169X. doi: 10.1111/dgd.12558.

Shubin, Neil H., Edward B. Daeschler, and Farish A. Jenkins (2006). “The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb”. In: Nature 440.7085, pp. 764–771. issn: 14764687. doi: 10.1038/nature04637.

Singh, Yogendra Pratap et al. (2018). “Injectable hydrogels: A new paradigm for osteochon-dral tissue engineering”. In: Journal of Materials Chemistry B 6.35, pp. 5499–5529. issn: 2050750X. doi: 10.1039/c8tb01430b.

Smith, A. et al. (2008). “Gene expression analysis on sections of zebrafish regenerating fins reveals limitations in the whole-mount in situ hybridization method”. In: Developmental Dynamics 237.2, pp. 417–425. issn: 10588388. doi: 10.1002/dvdy.21417.

Srinivasan, S., H. Alexander, and S. Alexander (2000). “The Dictyostelium fruiting body - A structure of cells and cellulose”. In: Trends in Cell Biology 10.8, p. 315. issn: 09628924. doi: 10.1016/S0962-8924(00)01775-X.

Standen, E. M. (2008). “Pelvic fin locomotor function in fishes: Three-dimensional kinematics in rainbow trout (Oncorhynchus mykiss)”. In: Journal of Experimental Biology 211.18,pp. 2931–2942. issn: 00220949. doi: 10.1242/jeb.018572.

Standen, E. M. and G. V. Lauder (2005). “Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: Three-dimensional kinematics during propulsion and maneuvering”.In: Journal of Experimental Biology 208.14, pp. 2753–2763. issn: 00220949. doi: 10. 1242/jeb.01706.

Thorimbert, Valentine et al. (2015). “Bone morphogenetic protein signaling promotes mor- phogenesis of blood vessels, wound epidermis, and actinotrichia during fin regeneration in zebrafish”. In: The FASEB Journal 29.10, pp. 4299–4312. doi: 10.1096/fj.15-272955.

Ton, Quynh V. et al. (2018). “Collagen COL22A1 maintains vascular stability and mutations in COL22A1 are potentially associated with intracranial aneurysms”. In: DMM Disease Models and Mechanisms 11.12. issn: 17548411. doi: 10.1242/dmm.033654.

Triantafyllou, M. S., G. S. Triantafyllou, and D. K. P. Yue (2000). “Ydrodynamics of”. In:Annual Review of Fluid Mechanics 32, pp. 33–53. issn: 0066-4189.

Tziveleka, Leto Aikaterini et al. (2017). “Collagen from the marine sponges Axinella cannabina and Suberites carnosus: Isolation and morphological, biochemical, and biophysical charac- terization”. In: Marine Drugs 15.6. issn: 16603397. doi: 10.3390/md15060152.

Van Den Boogaart, Jos G.M., Mees Muller, and Jan W.M. Osse (2012). “Structure and function of the median finfold in larval teleosts”. In: Journal of Experimental Biology 215.14, pp. 2359– 2368. issn: 00220949. doi: 10.1242/jeb.065615.

Videler, J.J (1993). Fish Swimming. Chapman Hall, London.

Wilga, C. D. and G. V. Lauder (2000). “Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata”. In: Journal of Experimental Biology 203.15, pp. 2261–2278. issn: 00220949. doi: 10.1242/jeb.203.15.2261.

Wood, A. and P. Thorogood (1987). “An ultrastructural and morphometric analysis of an in vivo contact guidance system”. In: Development 101.2, pp. 363–381. issn: 09591991.

Yano, Tohru and Koji Tamura (2013). “The making of differences between fins and limbs”. In: Journal of Anatomy 222.1, pp. 100–113. issn: 00218782. doi: 10.1111/j.1469- 7580.2012.01491.x.

Yano, Tohru et al. (2012). “Erratum to: Mechanism of pectoral fin outgrowth in zebrafish development, (Development, 139, (2916-2925))”. In: Development (Cambridge) 139.22,p. 4291. issn: 09501991. doi: 10.1242/dev.090324.

Zaucke, Frank and Susanne Grässel (2009). “Histol Histopathol, Vol 24, Zaucke and Grässel”. In: pp. 1067–1079. url: http://www.hh.um.es/Abstracts/Vol_24/24_8/24_8_ 1067.htm.

Zempo, Buntaro et al. (2021). High-speed camera recordings uncover previously unidentified elements of zebrafish mating behaviors integral to successful fertilization. doi: 10.1038/ s41598-021-99638-6. url: https://doi.org/10.1038/s41598-021-99638-6.

Zhang, Jin-li et al. (2021). “Vertebrate hemicentin-1 interacts physically and genetically with nidogen-2”. In: bioRxiv, pp. 1–62. doi: https://doi.org/10 .1101 /2021 .11 .24 . 469833. url: https://www.biorxiv.org/content / 10 . 1101 / 2021 . 11 . 24 . 469833v1.full.pdf.

Zhang, Jing et al. (2010). “Loss of fish actinotrichia proteins and the fin-to-limb transition”. In:Nature 466.7303, pp. 234–237. issn: 00280836. doi: 10.1038/nature09137.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る