リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution

Shimizu, Motoki Hirabuchi, Akiko Sugihara, Yu Abe, Akira Takeda, Takumi Kobayashi, Michie Hiraka, Yukie Kanzaki, Eiko Oikawa, Kaori Saitoh, Hiromasa Langner, Thorsten Banfield, Mark J. Kamoun, Sophien Terauchi, Ryohei 京都大学 DOI:10.1073/pnas.2116896119

2022.07.05

概要

Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal-associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.

この論文で使われている画像

関連論文

参考文献

1. S. A. Hogenhout, R. A. Van der Hoorn, R. Terauchi, S. Kamoun, Emerging concepts in effector biology of plant-associated organisms. Mol. Plant Microbe Interact. 22, 115–122 (2009).

2. J. D. Jones, J. L. Dangl, The plant immune system. Nature 444, 323–329 (2006).

3. J. Kourelis, R. A. L. van der Hoorn, Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30, 285–299 (2018).

4. H. Adachi, L. Derevnina, S. Kamoun, NLR singletons, pairs, and networks: Evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Curr. Opin. Plant Biol. 50, 121–131 (2019).

5. R. M. Clark et al., Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338–342 (2007).

6. A. L. Van de Weyer et al., A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178, 1260–1272.e14 (2019).

7. Q. Pan, J. Wendel, R. Fluhr, Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50, 203–213 (2000).

8. P. F. Sarris, V. Cevik, G. Dagdas, J. D. Jones, K. V. Krasileva, Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol. 14, 8 (2016).

9. M. Bernoux et al., Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-based switch activation model. Plant Cell 28, 146–159 (2016).

10. J. Wang et al., Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364, eaav5868 (2019).

11. S. Ma et al., Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 370, eabe3069 (2020).

12. R. Martin et al., Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370, eabd9993 (2020).

13. H. Sharif et al., Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570, 338–343 (2019).

14. J. L. Tenthorey et al., The structural basis of flagellin detection by NAIP5: A strategy to limit pathogen immune evasion. Science 358, 888–893 (2017).

15. J. Wang et al., Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870 (2019).

16. L. Zhang et al., Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350, 404–409 (2015).

17. G. Bi et al., The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528–3541.e12 (2021).

18. L. Wan et al., TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365, 799–803 (2019).

19. S. Horsefield et al., NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365, 793–799 (2019).

20. H. Adachi, S. Kamoun, A. Maqbool, A resistosome-activated ‘death switch.’ Nat. Plants 5, 457–458 (2019).

21. K. V. Krasileva, D. Dahlbeck, B. J. Staskawicz, Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22, 2444–2458 (2010).

22. T. Kroj, E. Chanclud, C. Michel-Romiti, X. Grand, J. B. Morel, Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol. 210, 618–626 (2016).

23. S. J. Williams et al., Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344, 299–303 (2014).

24. C. Le Roux et al., A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161, 1074–1088 (2015).

25. Y. Okuyama et al., A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J. 66, 467–479 (2011).

26. S. Cesari et al., The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25, 1463–1481 (2013).

27. I. Ashikawa et al., Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180, 2267–2276 (2008).

28. A. Maqbool et al., Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. eLife 4, e08709 (2015).

29. H. Takagi et al., MutMap-Gap: Whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol. 200, 276–283 (2013).

30. K. Fujisaki et al., An unconventional NOI/RIN4 domain of a rice NLR protein binds host EXO70 protein to confer fungal immunity. bioRxiv [Preprint] (2017). https://www.biorxiv.org/content/10. 1101/239400v1 (Accessed 24 December 2017).

31. C. H. Wu et al., NLR network mediates immunity to diverse plant pathogens. Proc. Natl. Acad. Sci. U.S.A. 114, 8113–8118 (2017).

32. P. C. Bailey et al., Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biol. 19, 23 (2018).

33. E. Pennisi, Armed and dangerous. Science 327, 804–805 (2010).

34. J. Liu et al., Recent progress and understanding of the molecular mechanisms of the riceMagnaporthe oryzae interaction. Mol. Plant Pathol. 11, 419–427 (2010).

35. Y. Wu et al., Combination patterns of major R genes determine the level of resistance to the M. oryzae in rice (Oryza sativa L.). PLoS One 10, e0126130 (2015).

36. M. J. Orbach, L. Farrall, J. A. Sweigard, F. G. Chumley, B. Valent, A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12, 2019–2032 (2000).

37. Y. Jia, S. A. McAdams, G. T. Bryan, H. P. Hershey, B. Valent, Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19, 4004–4014 (2000).

38. H. Kanzaki et al., Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. 72, 894–907 (2012).

39. K. Fujisaki et al., Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity. Plant J. 83, 875–887 (2015).

40. C. H. Park et al., The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice. PLoS Pathog. 12, e1005529 (2016).

41. R. Wang et al., Immunity to rice blast disease by suppression of effector-triggered necrosis. Curr. Biol. 26, 2399–2411 (2016).

42. R. Zdrzałek, S. Kamoun, R. Terauchi, H. Saitoh, M. J. Banfield, The rice NLR pair Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation. PLoS One 15, e0238616 (2020).

43. Y. Kojima, K. Ebana, S. Fukuoka, T. Nagamine, M. Kawase, Development of an RFLP-based rice diversity research set of germplasm. Breed. Sci. 55, 431–440 (2005).

44. P. Li et al., RGAugury: A pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics 17, 852 (2016).

45. H. Zhao et al., The rice blast resistance gene Ptr encodes an atypical protein required for broadspectrum disease resistance. Nat. Commun. 9, 2039 (2018).

46. X. Meng et al., The broad-spectrum rice blast resistance (R) gene Pita2 encodes a novel R protein unique from Pita. Rice (N. Y.) 13, 19 (2020).

47. S. V. Edwards, P. W. Hedrick, Evolution and ecology of MHC molecules: From genomics to sexual selection. Trends Ecol. Evol. 13, 305–311 (1998).

48. F. Tajima, Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

49. S. C esari et al., The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J. 33, 1941–1959 (2014).

50. K. Yoshida et al., Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21, 1573–1591 (2009).

51. K. Oikawa et al., The blast pathogen effector AVR-Pik binds and stabilizes rice heavy metalassociated (HMA) proteins to co-opt their function in immunity. bioRxiv [Preprint] (2020). https://www.biorxiv.org/content/10.1101/2020.12.01.406389v1.full (Accessed 2 December 2020).

52. A. Białas et al., Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. eLife 10, e66961 (2021).

53. J. H. R. Maidment et al., Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein OsHIPP19, providing a foundation to engineer plant defense. J. Biol. Chem. 296, 100371 (2021).

54. F. Lv et al., GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation. J. Exp. Bot. 66, 1877–1889 (2015).

55. W. Truman, M. H. Bennett, I. Kubigsteltig, C. Turnbull, M. Grant, Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc. Natl. Acad. Sci. U.S.A. 104, 1075–1080 (2007).

56. Y. Zhang, F. Zhang, X. Huang, Characterization of an Arabidopsis thaliana DUF761-containing protein with a potential role in development and defense responses. Theor. Exp. Plant Physiol. 31, 303–316 (2019).

57. N. Takahata, M. Nei, Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124, 967–978 (1990).

58. S. B. Piertney, M. K. Oliver, The evolutionary ecology of the major histocompatibility complex. Heredity 96, 7–21 (2006).

59. M. E. Woolhouse, J. P. Webster, E. Domingo, B. Charlesworth, B. R. Levin, Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat. Genet. 32, 569–577 (2002).

60. R. Terauchi, K. Yoshida, Towards population genomics of effector-effector target interactions. New Phytol. 187, 929–939 (2010).

61. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

62. D. Miki, K. Shimamoto, Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol. 45, 490–495 (2004).

63. M. Mikami, S. Toki, M. Endo, Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol. Biol. 88, 561–572 (2015).

64. J. Sweigard, F. Chumley, A. Carroll, L. Farrall, B. Valent, A series of vectors for fungal transformation. Fungal Genet. Newsl. 44, 52–55 (1997).

65. T. Arazoe et al., Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol. Bioeng. 112, 2543–2549 (2015).

66. M. Shimizu et al., RNA-seq of in planta-expressed Magnaporthe oryzae genes identifies MoSVP as a highly expressed gene required for pathogenicity at the initial stage of infection. Mol. Plant Pathol. 20, 1682–1695 (2019).

67. Q. Zhao et al., Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278–284 (2018).

68. H. Du et al., Sequencing and de novo assembly of a near complete indica rice genome. Nat. Commun. 8, 15324 (2017).

69. International Rice Genome Sequencing Project, The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

70. Z. Wu et al., De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution. Commun. Biol. 1, 84 (2018).

71. A. V. Zimin et al., Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 27, 787–792 (2017).

72. M. Mascher et al., A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).

73. J. L. Bennetzen et al., Reference genome sequence of the model plant Setaria. Nat. Biotechnol. 30, 555–561 (2012).

74. A. V. Zimin et al., The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677 (2013).

75. H. Li, R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

76. A. L€oytynoja, N. Goldman, webPRANK: A phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinformatics 11, 579 (2010).

77. B. Q. Minh et al., IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

78. D. T. Hoang, O. Chernomor, A. von Haeseler, B. Q. Minh, L. S. Vinh, UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

79. S. Kalyaanamoorthy, B. Q. Minh, T. K. F. Wong, A. von Haeseler, L. S. Jermiin, ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

80. V. Ranwez, E. J. P. Douzery, C. Cambon, N. Chantret, F. Delsuc, MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 35, 2582–2584 (2018).

81. S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

82. Z. Yang, R. Nielsen, Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000).

83. Z. Yang, PAML: A program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る