リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Genetic dissection of resistance of two rice cultivars against blast fungus Magnaporthe oryzae」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Genetic dissection of resistance of two rice cultivars against blast fungus Magnaporthe oryzae

BASAVARAJ 京都大学 DOI:10.14989/doctor.k24680

2023.03.23

概要

As explained above, resistant rice cultivars are essential to controlling blast disease.
The highest levels of resistance are, in general, conferred by one or a few major genes that are
efficient only toward the avirulent M. oryzae isolates. To date, significant progress has been
achieved through the genetic analysis of rice resistance and M. oryzae avirulence.
Over the past three decades, R genes have been cloned from a wide range of plant
species (Hammond-Kosack and Parker, 2003). Some NLRs work as a single genetic unit to
sense and signal. When these NLRs directly or indirectly identify effectors, the host's HR is
triggered. Some NLRs work in pairs and are genetically related, with the sensor NLR uniquely
specialized to detect the pathogen. In the three classic examples of paired NLR genes of rice,
namely the Pik (Pikp-1 and Pikp-2), Pia (RGA4 and RGA5), and Pi5 (Pi5-1 and Pi5-2), also
known as Pii (Pii-1 and Pii-2), two NLR genes are genetically linked in head-to-head
orientation (Ashikawa et al., 2008; Lee et al., 2009; Maqbool et al., 2015; Okuyama et al.,
2011). One NLR of the paired NLRs (Pikp-1, RGA5, and Pii-2) has a non-canonical domain
called the integrated domain (ID), which shares amino acid sequence similarity with domains
in the rice protein and possibly functions as a decoy for recognizing AVR (Cesari, et al., 2014a;
Kroj et al., 2016; Sarris et al., 2016). These NLRs are called "sensor NLRs" because they detect
AVRs, whereas the other NLRs play a role in signaling ("helper NLRs"). ...

この論文で使われている画像

関連論文

参考文献

Abe, A., Kosugi, S., Yoshida, Kentaro, Natsume, S., Takagi, H., Kanzaki, H., et al. (2012)

Genome sequencing reveals agronomically important loci in rice using MutMap. Nat

Biotechnol, 30, 174–178.

Adachi, H., Derevnina, L., and Kamoun, S. (2019) NLR singletons, pairs, and networks:

evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of

plants. Current Opinion in Plant Biology, 50, 121–131.

Ade, J., DeYoung, B.J., Golstein, C., and Innes, R.W. (2007) Indirect activation of a plant

nucleotide binding site–leucine-rich repeat protein by a bacterial protease. Proc

National Acad Sci, 104, 2531–2536.

Agrios, G.N. (1998) Plant Pathology. Acadenic Press.

Ahn, S., Kim, Y., Hong, H., Choi, H., Moon, H., Han, S., and Mccouch, S. (1997) Mapping of

genes conferring resistance to Korean isolates of rice blast fungus using DNA markers.

Korean Journal of Breeding (Korea Republic).

Alonge, M., Soyk, S., Ramakrishnan, S., Wang, X., Goodwin, S., Sedlazeck, F.J., et al. (2019)

RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome

Biol, 20, 224.

Ashikawa, I., Hayashi, N., Yamane, H., Kanamori, H., Wu, J., Matsumoto, T., et al. (2008)

Two Adjacent Nucleotide-Binding Site–Leucine-Rich Repeat Class Genes Are Required

to Confer Pikm-Specific Rice Blast Resistance. Genetics, 180, 2267–2276.

Ashkani, S., Rafii, M.Y., Shabanimofrad, M., Ghasemzadeh, A., Ravanfar, S.A., and Latif,

M.A. (2014) Molecular progress on the mapping and cloning of functional genes for

blast disease in rice (Oryza sativa L.): current status and future considerations. Critical

Reviews in Biotechnology, 36, 353–367.

77

Baudin, M., Hassan, J.A., Schreiber, K.J., and Lewis, J.D. (2017) Analysis of the ZAR1 Immune

Complex Reveals Determinants for Immunity and Molecular Interactions. Plant

Physiology, 174, 2038–2053.

Bentham, A.R., Zdrzałek, R., Concepcion, J.C.D. la, and Banfield, M.J. (2018) Uncoiling

CNLs: Structure/Function Approaches to Understanding CC Domain Function in Plant

NLRs. Plant and Cell Physiology, 59, 2398–2408.

Bernoux, M., Burdett, H., Williams, S.J., Zhang, X., Chen, C., Newell, K., et al. (2016)

Comparative Analysis of the Flax Immune Receptors L6 and L7 Suggests an

Equilibrium-Based Switch Activation Model. The Plant Cell, 28, 146–159.

Białas, A., Zess, E.K., Concepcion, J.C.D. la, Franceschetti, M., Pennington, H.G., Yoshida,

K., et al. (2018) Lessons in Effector and NLR Biology of Plant-Microbe Systems. Mol

Plant-microbe Interactions, 31, 34–45.

Brim, C.A. (1966) A Modified Pedigree Method of Selection in Soybeans1. Crop Science, 6,

cropsci1966.0011183X000600020041x.

Cabanettes, F. and Klopp, C. (2018) D-GENIES: dot plot large genomes in an interactive,

efficient and simple way. PeerJ, 6, e4958.

Casey, L.W., Lavrencic, P., Bentham, A.R., Cesari, S., Ericsson, D.J., Croll, T., et al. (2016)

The CC domain structure from the wheat stem rust resistance protein Sr33 challenges

paradigms for dimerization in plant NLR proteins. Proc National Acad Sci, 113,

12856–12861.

Cesari, S., Bernoux, M., Moncuquet, P., Kroj, T., and Dodds, P. (2014) A novel conserved

mechanism for plant NLR protein pairs: the ‘integrated decoy’ hypothesis. Frontiers in

Plant Science, 5.

78

Cesari, S., Kanzaki, H., Fujiwara, T., Bernoux, M., Chalvon, V., Kawano, Y., et al. (2014) The

NB‐LRR proteins RGA4 and RGA5 interact functionally and physically to confer

disease resistance. Embo J, 33, 1941–1959.

Cesari, S., Thilliez, G., Ribot, C., Chalvon, V., Michel, C., Jauneau, A., et al. (2013) The Rice

Resistance Protein Pair RGA4/RGA5 Recognizes the Magnaporthe oryzae Effectors

AVR-Pia and AVR1-CO39 by Direct Binding. The Plant Cell Online, 25, 1463–1481.

CHEN, D., CHEN, X., MA, B., WANG, Y., ZHU, L., and LI, S. (2010) Genetic

Transformation of Rice with Pi-d2 Gene Enhances Resistance to Rice Blast Fungus

Magnaporthe oryzae. Rice Science, 17, 19–27.

Chen, J., Upadhyaya, N.M., Ortiz, D., Sperschneider, J., Li, F., Bouton, C., et al. (2017) Loss

of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in

wheat. Science, 358, 1607–1610.

Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., et al. (2006) AB‐lectin receptor kinase

gene conferring rice blast resistance. The Plant Journal, 46, 794–804.

Chen, Y., Nie, F., Xie, S.-Q., Zheng, Y.-F., Dai, Q., Bray, T., et al. (2021) Efficient assembly

of nanopore reads via highly accurate and intact error correction. Nature

Communications, 12, 60.

Couch, B.C., Fudal, I., Lebrun, M.-H., Tharreau, D., Valent, B., van Kim, P., et al. (2005)

Origins of Host-Specific Populations of the Blast Pathogen Magnaporthe oryzae in

Crop Domestication With Subsequent Expansion of Pandemic Clones on Rice and

Weeds of Rice. Genetics, 170, 613–630.

Couch, B.C. and Kohn, L.M. (2002) A multilocus gene genealogy concordant with host

preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea.

Mycologia, 94, 683–693.

79

Dangl, J.L., Dietrich, R.A., and Richberg, M.H. (1996) Death Don’t Have No Mercy: Cell

Death Programs in Plant-Microbe Interactions. Plant Cell, 8, 1793–1807.

Dangl, J.L. and Jones, J.D.G. (2001) Plant pathogens and integrated defence responses to

infection. Nature, 411, 826–833.

Dodds, P.N. and Rathjen, J.P. (2010) Plant immunity: towards an integrated view of plant–

pathogen interactions. Nat Rev Genet, 11, 539–548.

Du, D., Liu, M., Xing, Y., Chen, X., Zhang, Y., Zhu, M., et al. (2019) Semi‐dominant mutation

in the cysteine‐rich receptor‐like kinase gene, ALS1, conducts constitutive defence

response in rice. Plant Biology, 21, 25–34.

FAO’s Director‐General on How to Feed the World in 2050 (2009) Population and

Development Review, 35, 837–839.

Fernandez-Pozo, N., Menda, N., Edwards, J.D., Saha, S., Tecle, I.Y., Strickler, S.R., et al.

(2015) The Sol Genomics Network (SGN)—from genotype to phenotype to breeding.

Nucleic Acids Research, 43, D1036–D1041.

Flor, H.H. (1971) Current Status of the Gene-For-Gene Concept. Annual Review of

Phytopathology, 9, 275–296.

Flor, H.H. (1956) The Complementary Genic Systems in Flax and Flax Rust**Joint

contribution from the Field Crops Research Branch, Agricultural Research Service,

United States Department of Agriculture and the North Dakota Agricultural

Experiment Station. Advances in Genetics, 8, 29–54.

Fragoso, C.A., Heffelfinger, C., Zhao, H., and Dellaporta, S.L. (2016) Imputing Genotypes in

Biallelic Populations from Low-Coverage Sequence Data. Genetics, 202, 487–495.

Fujisaki, K., Abe, Y., Ito, A., Saitoh, H., Yoshida, K., Kanzaki, H., et al. (2015) Rice Exo70

interacts with a fungal effector, AVR‐Pii, and is required for AVR‐Pii‐triggered

immunity. The Plant Journal, 83, 875–887.

80

Fukuoka, S., Saka, N., Koga, H., Ono, K., Shimizu, T., Ebana, K., et al. (2009) Loss of Function

of a Proline-Containing Protein Confers Durable Disease Resistance in Rice. Science,

325, 998–1001.

Gabriëls, S.H.E.J., Vossen, J.H., Ekengren, S.K., Ooijen, G. van, Abd‐El‐Haliem, A.M., Berg,

G.C.M. van den, et al. (2007) An NB‐LRR protein required for HR signalling mediated

by both extra‐ and intracellular resistance proteins. The Plant Journal, 50, 14–28.

Goulden, C. (1939) Problems in plant selection.-Burnett, RC (ed.): Proceedings of the 7th

International Genetic Congress.

Greer, C.A. and Webster, R.K. (2001) Occurrence, Distribution, Epidemiology, Cultivar

Reaction, and Management of Rice Blast Disease in California. Plant Disease, 85,

1096–1102.

Hammond-Kosack, K.E. and Parker, J.E. (2003) Deciphering plant–pathogen communication:

fresh perspectives for molecular resistance breeding. Current Opinion in

Biotechnology, 14, 177–193.

Heath, M.C. (1985) Implications of nonhost resistance for understanding host-parasite

interactions. 2–2.

Hirata, K., Kusaba, M., Chuma, I., Osue, J., Nakayashiki, H., Mayama, S., and Tosa, Y. (2007)

Speciation in Pyricularia inferred from multilocus phylogenetic analysis. Mycological

Research, 111, 799–808.

Innes, R.W. (2004) Guarding the Goods. New Insights into the Central Alarm System of Plants.

Plant Physiology, 135, 695–701.

Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P., and Valent, B. (2000) Direct interaction

of resistance gene and avirulence gene products confers rice blast resistance. EMBO

J, 19, 4004–4014.

Jones, J.D.G. and Dangl, J.L. (2006) The plant immune system. Nature, 444, 323–329.

81

Kanzaki, H., Yoshida, K., Saitoh, H., Fujisaki, K., Hirabuchi, A., Alaux, L., et al. (2012) Arms

race co‐evolution of Magnaporthe oryzae AVR‐Pik and rice Pik genes driven by their

physical interactions. Plant J, 72, 894–907.

Kato, H., Yamamoto, M., Yamaguchi-ozaki, T., Kadouchi, H., Iwamoto, Y., Nakayashiki, H.,

et al. (2000) Pathogenicity, Mating Ability and DNA Restriction Fragment Length

Polymorphisms of Pyricularia Populations Isolated from Gramineae, Bambusideae

and Zingiberaceae Plants. Journal of General Plant Pathology, 66, 30–47.

Katoh, K. and Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version

7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30,

772–780.

Kawahara, Y., Bastide, M. de la, Hamilton, J.P., Kanamori, H., McCombie, W.R., Ouyang, S.,

et al. (2013) Improvement of the Oryza sativa Nipponbare reference genome using next

generation sequence and optical map data. Rice, 6, 4.

Keen, N.T. (1990) Gene-For-Gene Complementarity in Plant-Pathogen Interactions. Annual

Review of Genetics, 24, 447–463.

Keen, N.T., Bent, A., and Staskawicz, B. (1993) Plant disease resistance genes: interactions

with pathogens and their improved utilization to control plant diseases. In: , pp. 65–88.

New York: Wiley-Liss Inc.

Kojima, Y., Ebana, K., Fukuoka, S., Nagamine, T., and Kawase, M. (2005) Development of an

RFLP-based Rice Diversity Research Set of Germplasm. Breeding Sci, 55, 431–440.

Kroj, T., Chanclud, E., Michel‐Romiti, C., Grand, X., and Morel, J. (2016) Integration of decoy

domains derived from protein targets of pathogen effectors into plant immune receptors

is widespread. New Phytologist, 210, 618–626.

82

Le Roux, C., Huet, G., Jauneau, A., Camborde, L., Trémousaygue, D., Kraut, A., et al. (2015)

A Receptor Pair with an Integrated Decoy Converts Pathogen Disabling of

Transcription Factors to Immunity. Cell, 161, 1074–1088.

Lee, S.-K., Song, M.-Y., Seo, Y.-S., Kim, H.-K., Ko, S., Cao, P.-J., et al. (2009) Rice Pi5Mediated Resistance to Magnaporthe oryzae Requires the Presence of Two CoiledCoil–Nucleotide-Binding–Leucine-Rich Repeat Genes. Genetics, 181, 1627–1638.

Lei, C., Hao, K., Yang, Y., Ma, J., Wang, S., Wang, J., et al. (2013) Identification and fine

mapping of two blast resistance genes in rice cultivar 93-11. The Crop Journal, 1, 2–

14.

Levitsky, V.G. (2004) RECON: a program for prediction of nucleosome formation potential.

Nucleic Acids Research, 32, W346–W349.

Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows–Wheeler

transform. Bioinformatics, 25, 1754–1760.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009) The

Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078–2079.

Li, P., Quan, X., Jia, G., Xiao, J., Cloutier, S., and You, F.M. (2016) RGAugury: a pipeline for

genome-wide prediction of resistance gene analogs (RGAs) in plants. Bmc Genomics,

17, 852.

Liu, J., WANG, X., MITCHELL, T., HU, Y., LIU, X., DAI, L., and WANG, G. (2010) Recent

progress and understanding of the molecular mechanisms of the rice–Magnaporthe

oryzae interaction. Mol Plant Pathol, 11, 419–427.

Liu, W., Liu, J., Ning, Y., Ding, B., Wang, X., Wang, Z., and Wang, G.-L. (2013) Recent

Progress in Understanding PAMP- and Effector-Triggered Immunity against the Rice

Blast Fungus Magnaporthe oryzae. Mol Plant, 6, 605–620.

83

Liu, W.-Y., Kang, J.-H., Jeong, H.-S., Choi, H.-J., Yang, H.-B., Kim, K.-T., et al. (2014)

Combined use of bulked segregant analysis and microarrays reveals SNP markers

pinpointing a major QTL for resistance to Phytophthora capsici in pepper. Theoretical

and Applied Genetics, 127, 2503–2513.

Liu, Y., Zhang, X., Yuan, G., Wang, D., Zheng, Y., Ma, M., et al. (2021) A designer rice NLR

immune receptor confers resistance to the rice blast fungus carrying noncorresponding

avirulence effectors. Proc National Acad Sci, 118, e2110751118.

Lo, C.-C. and Chain, P.S.G. (2014) Rapid evaluation and quality control of next generation

sequencing data with FaQCs. BMC Bioinformatics, 15, 366.

Maekawa, T., Cheng, W., Spiridon, L.N., Töller, A., Lukasik, E., Saijo, Y., et al. (2011) Coiledcoil domain-dependent homodimerization of intracellular barley immune receptors

defines a minimal functional module for triggering cell death. Cell Host Microbe, 9,

187–199.

Maqbool, A., Saitoh, H., Franceschetti, M., Stevenson, C., Uemura, A., Kanzaki, H., et al.

(2015) Structural basis of pathogen recognition by an integrated HMA domain in a

plant NLR immune receptor. eLife, 4, e08709.

Marchler-Bauer, A., Anderson, J.B., Derbyshire, M.K., DeWeese-Scott, C., Gonzales, N.R.,

Gwadz, M., et al. (2007) CDD: a conserved domain database for interactive domain

family analysis. Nucleic Acids Research, 35, D237–D240.

Medzhitov, R. and Janeway, C.A. (1997) Innate Immunity: The Virtues of a Nonclonal System

of Recognition. Cell, 91, 295–298.

Mikami, M., Toki, S., and Endo, M. (2015) Parameters affecting frequency of CRISPR/Cas9

mediated targeted mutagenesis in rice. Plant Cell Rep, 34, 1807–1815.

Miki, D. and Shimamoto, K. (2004) Simple RNAi Vectors for Stable and Transient Suppression

of Gene Function in Rice. Plant and Cell Physiology, 45, 490–495.

84

Molinari, C. and Talbot, N.J. (2022) A Basic Guide to the Growth and Manipulation of the

Blast Fungus, Magnaporthe oryzae. Curr Protoc, 2, e523.

Nalley, L., Tsiboe, F., Durand-Morat, A., Shew, A., and Thoma, G. (2016) Economic and

Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae) Alleviation in the

United States. Plos One, 11, e0167295.

Naqvi, N.I., Bonman, J.M., Mackill, D.J., Nelson, R.J., and Chattoo, B.B. (1995) Identification

of RAPD markers linked to a major blast resistance gene in rice. Molecular Breeding,

1, 341–348.

Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C., and Durbin, R. (2016)

BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from nextgeneration sequencing data. Bioinformatics, 32, 1749–1751.

Ning, X., Yunyu, W., and Aihong, L. (2020) Strategy for Use of Rice Blast Resistance Genes

in Rice Molecular Breeding. Rice Science, 27, 263–277.

Nürnberger, T. and Brunner, F. (2002) Innate immunity in plants and animals: emerging

parallels between the recognition of general elicitors and pathogen-associated

molecular patterns. Curr Opin Plant Biol, 5, 318–324.

Okuyama, Y., Kanzaki, H., Abe, A., Yoshida, K., Tamiru, M., Saitoh, H., et al. (2011) A

multifaceted genomics approach allows the isolation of the rice Pia‐blast resistance

gene consisting of two adjacent NBS‐LRR protein genes. The Plant Journal, 66, 467–

479.

Orbach, M.J., Farrall, L., Sweigard, J.A., Chumley, F.G., and Valent, B. (2000) A Telomeric

Avirulence Gene Determines Efficacy for the Rice Blast Resistance Gene Pi-ta. Plant

Cell, 12, 2019–2032.

85

Ortiz, D., Guillen, K. de, Cesari, S., Chalvon, V., Gracy, J., Padilla, A., and Kroj, T. (2017)

Recognition of the Magnaporthe oryzae Effector AVR-Pia by the Decoy Domain of the

Rice NLR Immune Receptor RGA5. Plant Cell, 29, 156–168.

Ou, S. (1985) Rice Diseases, Commonwealth Agricultural Bureau. 62.

Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., and Salzberg, S.L. (2016) Transcript-level

expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown.

Nature Protocols, 11, 1650–1667.

Ravensdale, M., Bernoux, M., Ve, T., Kobe, B., Thrall, P.H., Ellis, J.G., and Dodds, P.N.

(2012) Intramolecular Interaction Influences Binding of the Flax L5 and L6 Resistance

Proteins to their AvrL567 Ligands. Plos Pathog, 8, e1003004.

Roberts, M., Tang, S., Stallmann, A., Dangl, J.L., and Bonardi, V. (2013) Genetic

Requirements for Signaling from an Autoactive Plant NB-LRR Intracellular Innate

Immune Receptor. PLOS Genetics, 9, e1003465.

Rosyara, U.R., Jong, W.S.D., Douches, D.S., and Endelman, J.B. (2016) Software for Genome‐

Wide Association Studies in Autopolyploids and Its Application to Potato. The Plant

Genome, 9.

Sahu, P., Sao, R., Choudhary, D., Thada, A., Kumar, V., Mondal, S., et al. (2022) Advancement

in the Breeding, Biotechnological and Genomic Tools towards Development of Durable

Genetic Resistance against the Rice Blast Disease. Plants, 11, null.

Sallaud, C., Lorieux, M., Roumen, E., Tharreau, D., Berruyer, R., Svestasrani, P., et al. (2003)

Identification of five new blast resistance genes in the highly blast-resistant rice variety

IR64 using a QTL mapping strategy. Theor Appl Genet, 106, 1532–1532.

Sarris, P.F., Cevik, V., Dagdas, G., Jones, J.D.G., and Krasileva, K.V. (2016) Comparative

analysis of plant immune receptor architectures uncovers host proteins likely targeted

by pathogens. BMC Biology, 14, 8.

86

Sasaki, T. and Burr, B. (2000) International Rice Genome Sequencing Project: the effort to

completely sequence the rice genome. Curr Opin Plant Biol, 3, 138–142.

Schmied, W.H., Tnimov, Z., Uttamapinant, C., Rae, C.D., Fried, S.D., and Chin, J.W. (2018)

Controlling orthogonal ribosome subunit interactions enables evolution of new

function. Nature, 564, 444–448.

Schmieder, R. and Edwards, R. (2011) Quality control and preprocessing of metagenomic

datasets. Bioinformatics, 27, 863–864.

Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of

image analysis. Nature methods, 9, 671–675.

Shimizu, M., Hirabuchi, A., Sugihara, Y., Abe, A., Takeda, T., Kobayashi, M., et al. (2022) A

genetically linked pair of NLR immune receptors shows contrasting patterns of

evolution. Proceedings of the National Academy of Sciences, 119, e2116896119.

Shiratsuchi, H., Ohdaira, Y., Yamaguchi, H., and Fukuda, A. (2017) Breaking the dormancy

of rice seeds with various dormancy levels using steam and high temperature

treatments in a steam nursery cabinet. Plant Production Science, 20, 183–192.

Swiderski, M.R., Birker, D., and Jones, J.D.G. (2009) The TIR domain of TIR-NB-LRR

resistance proteins is a signaling domain involved in cell death induction. Mol Plant

Microbe Interact, 22, 157–165.

Takagi, H., Uemura, A., Yaegashi, H., Tamiru, M., Abe, A., Mitsuoka, C., et al. (2013a)

MutMap‐Gap: whole‐genome resequencing of mutant F2 progeny bulk combined with

de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol,

200, 276–283.

Takagi, H., Uemura, A., Yaegashi, H., Tamiru, M., Abe, A., Mitsuoka, C., et al. (2013b)

MutMap‐Gap: whole‐genome resequencing of mutant F2 progeny bulk combined with

87

de novo assembly of gap regions identifies the rice blast resistance gene Pii. New

Phytologist, 200, 276–283.

Tang, J., Zhu, X., Wang, Y., Liu, L., Xu, B., Li, F., et al. (2011) Semi‐dominant mutations in

the CC‐NB‐LRR‐type R gene, NLS1, lead to constitutive activation of defense responses

in rice. The Plant Journal, 66, 996–1007.

Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22,

4673–4680.

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., and Rozen,

S.G. (2012) Primer3—new capabilities and interfaces. Nucleic Acids Research, 40,

e115–e115.

Wang, B., Ebbole, D.J., and Wang, Z. (2017) The arms race between Magnaporthe oryzae and

rice: Diversity and interaction of Avr and R genes. Journal of Integrative Agriculture,

16, 2746–2760.

Wang, Jizong, Hu, M., Wang, Jia, Qi, J., Han, Z., Wang, G., et al. (2019) Reconstitution and

structure of a plant NLR resistosome conferring immunity. Science, 364.

Wang, Jizong, Wang, Jia, Hu, M., Wu, S., Qi, J., Wang, G., et al. (2019) Ligand-triggered

allosteric ADP release primes a plant NLR complex. Science, 364.

Wang, R., Fang, N., Guan, C., He, W., Bao, Y., and Zhang, H. (2016) Characterization and

Fine Mapping of a Blast Resistant Gene Pi-jnw1 from the japonica Rice Landrace

Jiangnanwan. PLoS ONE, 11, e0169417.

Wick, R.R., Judd, L.M., and Holt, K.E. (2019) Performance of neural network basecalling

tools for Oxford Nanopore sequencing. 20, 129.

88

Williams, S.J., Sohn, K.H., Wan, L., Bernoux, M., Sarris, P.F., Segonzac, C., et al. (2014)

Structural Basis for Assembly and Function of a Heterodimeric Plant Immune Receptor.

Science, 344, 299–303.

Wu, Y., Chen, Y., Pan, C., Xiao, N., Yu, L., Li, Y., et al. (2017) Development and Evaluation

of Near-Isogenic Lines with Different Blast Resistance Alleles at the Piz Locus in

japonica Rice from the Lower Region of the Yangtze River, China. Plant Disease, 101,

1283–1291.

Yoshida, Kentaro, Saitoh, H., Fujisawa, S., Kanzaki, H., Matsumura, H., Yoshida, Kakoto, et

al. (2009) Association Genetics Reveals Three Novel Avirulence Genes from the Rice

Blast Fungal Pathogen Magnaporthe oryzae. The Plant Cell, 21, 1573–1591.

Yu, Z., Dong, L., Jiang, Z., Yi, K., Zhang, J., Zhang, Z., et al. (2018) A semi-dominant mutation

in a CC-NB-LRR-type protein leads to a short-root phenotype in rice. Rice, 11, 54.

Yuan, B., Zhai, C., Wang, W., Zeng, X., Xu, X., Hu, H., et al. (2011) The Pik-p resistance to

Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes.

Theoretical and Applied Genetics, 122, 1017–1028.

Zeigler, R.S., Leong, S.A., and Teng, P.S. (1994) Rice blast disease. Int. Rice Res. Inst.

Zhai, C., Lin, F., Dong, Z., He, X., Yuan, B., Zeng, X., et al. (2010) The isolation and

characterization of Pik, a rice blast resistance gene which emerged after rice

domestication. New Phytologist, 189, 321–334.

Zhang, X., Bernoux, M., Bentham, A.R., Newman, T.E., Ve, T., Casey, L.W., et al. (2017)

Multiple functional self-association interfaces in plant TIR domains. Proceedings of

the National Academy of Sciences, 114, E2046–E2052.

Zhao, H., Wang, X., Jia, Y., Minkenberg, B., Wheatley, M., Fan, J., et al. (2018) The rice blast

resistance gene Ptr encodes an atypical protein required for broad-spectrum disease

resistance. Nature Communications, 9, 2039.

89

Zhou, B., Dolan, M., Sakai, H., and Wang, G.-L. (2007) The Genomic Dynamics and

Evolutionary Mechanism of the Pi2/9 Locus in Rice. Molecular Plant-Microbe

Interactions®, 20, 63–71.

Zhou, B., Qu, S., Liu, G., Dolan, M., Sakai, H., Lu, G., et al. (2006) The Eight Amino-Acid

Differences Within Three Leucine-Rich Repeats Between Pi2 and Piz-t Resistance

Proteins Determine the Resistance Specificity to Magnaporthe grisea. Mol Plantmicrobe Interactions, 19, 1216–1228.

Zhou, Q., Zhang, Z., Liu, T., Gao, B., and Xiong, X. (2017) Identification and Map-Based

Cloning of the Light-Induced Lesion Mimic Mutant 1 (LIL1) Gene in Rice. Frontiers in

Plant Science, 8, 2122.

90

Appendix 1. RILs used to generate resistant bulks for QTL-seq analysis

4.5

4.25

3.33

3.00

4.00

Sl. No8

N05_052

N05_063

N05_123

N05_093

N05_091

N05_148

N05_111

N05_066

N05_043

R RILs9

4.60

9.60

8.25

7.00

3.00

5.5

7.5

6.75

6.5

5.75

5.5

4.5

6.5

5.75

4.75

4.25

4.33

4.33

4.33

4.33

4.00

4.00

4.00

4.00

4.00

4.00

3.67

3.67

3.33

3.33

RILs selected to constitute R-Bulk based on October 2019

phenotypic data

Lesion area (mm2)

R RILs3

7.50

4.75

4.33

10

N05_015

6.5

4.33

RILs selected to constitute R-Bulk based on June 2019

phenotypic data

Lesion area (mm2)

N05_066

7.00

4.75

4.00

11

N05_132

4.67

RILs selected to constitute R-Bulk based on August 2018

phenotypic data

Lesion area (mm2)

N05_056

5.25

12

N05_150

5.00

18

17

16

15

14

13

12

11

N05_049

N05_066

N05_012

N05_001

N05_080

N05_043

N05_079

N05_042

6.40

6.25

6.00

5.67

5.25

5.25

5.25

7.75

7.25

4.25

7.00

26

6.00

3.00

Sl. No2

N05_093

5.5

4.33

13

N05_122

3.50

5.75

5.33

19

N05_094

27

Oct-1912

N05_043

5.5

5.67

14

N05_083

4.20

6.75

5.33

20

4.75

N05_111

5.5

3.67

15

N05_077

5.00

6.75

5.33

4.00

Jun-1911

5.33

N05_150

5.5

4.00

16

N05_116

5.25

7.5

5.67

4.5

6.75

5.25

5.33

N05_123

4.40

5.75

4.67

17

N05_079

4.40

7.5

7.00

N05_067

7.00

Aug-1810

7.5

4.33

N05_122

4.80

5.75

6.00

18

N05_080

3.00

5.5

7.00

28

4.25

3.33

7.5

4.33

10

N05_008

5.75

20

N05_084

3.25

N05_067

N05_131

Oct-196

3.00

6.5

11

N05_042

8.25

7.00

22

N05_082

4.40

N05_093

4.25

N05_055

4.25

N05_091

3.25

5.33

12

N05_148

5.00

3.67

23

N05_034

21

7.50

29

Jun-195

N05_082

3.50

5.67

13

N05_063

6.33

4.00

24

N05_008

22

N05_056

30

6.00

N05_034

4.20

6.75

7.00

14

N05_079

6.5

4.33

25

6.00

23

4.00

Aug-184

N05_083

4.25

5.5

4.00

15

N05_121

4.60

6.5

4.00

26

9.00

3.67

N05_077

4.40

6.33

9.75

16

N05_120

3.00

6.5

5.00

6.00

Oct-19

N05_055

4.40

6.75

19

N05_018

9.60

6.75

5.33

7.5

5.75

6.5

N05_084

4.60

4.67

20

N05_091

3.50

6.75

N05_121

7.25

8.25

Jun-19

N05_008

4.60

9.75

3.00

21

N05_052

4.60

6.75

N05_120

8.50

3.00

N05_018

5.5

5.00

22

N05_083

5.25

27

N05_139

Aug-18

N05_015

4.75

5.75

3.33

23

N05_015

4.40

28

N05_063

R RILs

4.80

4.75

24

N05_080

6.75

29

N05_054

Sl. No

10

N05_003

5.00

6.75

3.33

25

N05_084

7.00

6.67

24

25

91

44.25

Jun-19

64.67

Oct-1912

RILs selected to constitute S-Bulk based on October 2019

phenotypic data

Lesion area (mm2)

70.25

Jun-1911

S RILs

52.80

N05_070

Aug-1810

Sl. No

57.33

23.00

56.33

64.67

56.33

Oct-196

49.25

54.33

70.25

S RILs

27.00

20

70.25

Jun-195

N05_070

51.60

52.80

Sl. No

N05_100

17.40

Aug-184

33.33

Oct-19

N05_074

RILs selected to constitute S-Bulk based on June 2019

phenotypic data

Lesion area (mm2)

Appendix 2. RILs used to generate susceptible bulks for QTL-seq analysis

62.20

Aug-18

70.25

N05_086

RILs selected to constitute S-Bulk based on August 2018

phenotypic data

Lesion area (mm2)

S RILs

51.60

N05_099

N05_074

Sl. No

63.75

64.67

60.75

70.25

34.80

52.80

33.00

N05_070

N05_027

N05_046

56.33

49

70.25

49

38.50

51.60

19.25

N05_074

N05_142

N05_021

55.75

42.25

N05_045

55.75

37.00

42.25

35.67

N05_045

6.75

39.25

23.00

N05_087

12.00

N05_100

N05_031

N05_072

35.75

63.75

57.33

35.75

54.25

34.80

49.25

N05_088

16.75

N05_027

27.00

8.00

33.33

N05_136

44.25

62.20

23.00

N05_099

60.75

49

33.00

46.6

13.50

N05_046

N05_021

49

N05_109

26.33

37.00

25.00

10

N05_046

28

57.33

11

N05_038

13.25

49.25

12

33.33

15.40

21.25

45.75

13

12.33

13.25

27.00

44.25

N05_149

N05_096

23.50

22.67

43.75

N05_019

N05_065

N05_100

62.20

14

N05_037

N05_085

N05_068

16.50

15

10

N05_099

37.00

16

49

10

11

N05_023

39.25

8.00

13.50

24.00

39.25

12

38.25

13.5

23.00

13

23.00

35.75

20.25

N05_031

24.25

15.50

N05_114

N05_013

11

12.33

N05_031

35.75

N05_025

23.00

23.00

N05_044

17

N05_089

22.33

22.80

14

N05_088

18

N05_136

21.50

15.50

60.75

N05_014

15

19

N05_044

13.00

30.25

N05_071

16

12.67

20

N05_104

13.00

33.00

12

45.75

13.67

34.75

7.33

22.33

21

16.75

12.67

20.20

13

22.67

12.67

28.4

30.25

25.00

22

15.25

21.67

N05_068

25.5

21.50

28

13.67

N05_135

34.75

17.5

14

34.75

N05_073

20.20

25.5

N05_118

20.33

22.00

N05_038

13.25

25.25

23

N05_073

17.00

21.50

17

N05_103

22.00

24

10

N05_089

18

N05_065

13.40

25

12.75

N05_073

8.00

19

N05_089

24.25

7.33

13.33

15.40

15

18.5

24.00

20

N05_039

23.00

23.5

10.60

16

20.75

22.33

21

N05_014

22.8

15.00

N05_076

13.5

22

N05_104

22.25

17

30.25

54.33

23

N05_133

14.00

20.25

20

24

13.67

20.20

54.25

14.00

25

13.5

N05_013

17.40

43.75

13.50

25.5

N05_038

16.75

13.5

26.33

15.75

18

N05_086

16.50

38.25

22.00

19

N05_087

15.75

13.25

13.50

20

N05_023

15.50

49

21

N05_025

15.40

13.50

22

N05_044

13.33

23

N05_096

23.5

24

38.25

25

92

N05_024

N05_023

N05_022

N05_021

N05_020

N05_019

N05_018

N05_017

N05_016

N05_015

N05_014

N05_013

N05_012

N05_011

N05_010

N05_009

N05_008

N05_007

N05_006

N05_005

N05_004

N05_003

N05_002

N05_001

RIL #

15.75

6.00

16.50

4.25

7.25

11.25

15.40

4.60

9.00

9.75

4.60

23.00

20.25

5.67

16.50

3.75

3.00

4.40

9.00

9.50

6.25

5.50

4.75

6.25

5.25

August

2018

14

15

37

45

13

10

10

25

14

10

13

12

12

10

10

11

June

2019

5.33

4.00

5.67

7.00

6.33

7.33

4.00

3.67

6.67

5.67

6.67

9.67

5.33

8.67

3.67

3.33

October

2019

N05_075

N05_074

N05_073

N05_072

N05_071

N05_070

N05_069

N05_068

N05_067

N05_066

N05_065

N05_064

N05_063

N05_062

N05_061

N05_060

N05_059

N05_058

N05_057

N05_056

N05_055

N05_054

N05_053

N05_052

N05_051

RIL #

11.50

51.60

21.50

12.00

22.80

52.80

12.25

22.67

7.00

6.00

13.25

13.00

8.25

11.50

8.25

6.50

10.00

13.25

13.25

7.50

4.25

8.50

6.33

9.60

10.75

August

20183

11

74

32

70

19

42

28

10

14

11

10

10

14

11

June

20194

3.33

5.33

4.00

9.00

9.00

4.00

October

20195

N05_127

N05_126

N05_125

N05_123

N05_122

N05_121

N05_120

N05_119

N05_118

N05_117

N05_116

N05_115

N05_114

N05_113

N05_112

N05_111

N05_110

N05_109

N05_108

N05_107

N05_106

N05_105

N05_104

N05_102

N05_101

RIL #

August

20188

18

11

14

14

21

13

15

36

11

22

18

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る