リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Construction of organ-scale vascular networks using a decellularized liver by regulating mechanical and chemical factors (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Construction of organ-scale vascular networks using a decellularized liver by regulating mechanical and chemical factors (本文)

渡邉, 應文 慶應義塾大学

2020.03.23

概要

ドナー肝臓の不足により,末期の肝疾患患者への移植を目的としたバイオ人工肝臓の構築が期待されている.近年の組織工学における発展では,臓器から細胞のみを除去する脱細胞化技術を利用することで生体外において肝臓全体の組織を構築することが可能になってきた.しかし,脱細胞化肝臓骨格を用いて構築した組織は,内部の血管網の構築が不完全であるため移植後の長期的な維持が困難であり,機能的な肝臓の構築は依然として実現されていない.したがって,大血管から毛細血管に至るまでの機能的な血管網を構築することは,移植可能な肝臓を構築する上で極めて重要である.脱細胞化肝臓内における毛細血管の構築手法は確立されていない.そこで本論文では,機械的・化学的因子を調節することにより,毛細血管を有する臓器スケールの血管網を構築することを目的とした.

第 1 章では,本論文の研究背景および目的について述べた.

第 2 章では,脱細胞化肝臓内における毛細血管の構築について記述した.本章では,生体外培養系の従来研究を参考にして,血流を模したせん断応力とフィブロネクチンによるコーティングが,毛細血管を有する階層的な血管網の形成を誘導すると仮説を立てて実験を行った.その結果,還流培養およびフィブロネクチンのコーティングの組み合わせが,毛細血管の形成を顕著に促進されることを見出した.このことから,機械的・化学的因子の調節によって脱細胞化肝臓内における毛細血管の形成が誘導されることが分かった.

第 3 章では,マイクロ流体チップを用いて毛細血管網の吻合条件を検討した.血管吻合を形成することは,動静脈網を構築する上で重要である.そこで,ヒト臍帯静脈血管内皮細胞とヒト間葉系幹細胞の共培養を行うことにより,生体外のゲル内部において血管吻合を有する毛細血管網の形成を誘導した.特に,異なる細胞の比率,および生化学的な因子の濃度勾配が,血管吻合を有する血管網の形成を効率的に促進させることを示した.

第 4 章では,機械的・化学的因子の調節により,機能的な血管網の構築を図り,構築した血管網による抗血栓性の機能評価を行った.その結果,脱細胞化肝臓における血管内皮細胞の被覆率を向上させることにより,血小板の沈着が抑制されることが示された.以上の結果から,本研究で示した組織工学的手法が移植可能な肝組織の構築に向けて有用な知見を提供することができるものと期待される.

第 5 章では,本論文の研究結果を要約し,今後の展望について述べた.

この論文で使われている画像

参考文献

Abe, Y., M. Watanabe, S. Chung, R.D. Kamm, K. Tanishita, and R. Sudo. 2019. Balance of interstitial flow magnitude and vascular endothelial growth factor concentration modulates three-dimensional microvascular network formation. APL Bioeng. 3:1– 12.

Adeva-Andany, M.M., N. Pérez-Felpete, C. Fernández-Fernández, C. Donapetry-García, and C. Pazos-García. 2016. Liver glucose metabolism in humans. Biosci. Rep. 36:1– 15.

Ajoudanian, M., K. Enomoto, Y. Tokunaga, H. Minami, S. Chung, K. Tanishita, R.D. Kamm, and R. Sudo. 2019. Self-organization of hepatocyte morphogenesis depending on the size of collagen microbeads relative to hepatocytes. Biofabrication. 11:1–11.

Almazroo, O.A., M.K. Miah, and R. Venkataramanan. 2017. Drug Metabolism in the Liver. Clin. Liver Dis. 21:1–20.

Baeyens, N., S. Nicoli, B.G. Coon, T.D. Ross, K. Van Den Dries, J. Han, H.M. Lauridsen, C.O. Mejean, A. Eichmann, J.L. Thomas, J.D. Humphrey, and M.A. Schwartz. 2015. Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point. Elife. 2015:1–35.

Baptista, P.M., E.C. Moran, D. Vyas, M.H. Ribeiro, A. Atala, J.L. Sparks, and S. Soker. 2016. Fluid Flow Regulation of Revascularization and Cellular Organization in a Bioengineered Liver Platform. Tissue Eng. Part C. 22:199–207.

Baptista, P.M., M.M. Siddiqui, G. Lozier, S.R. Rodriguez, A. Atala, and S. Soker. 2011. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 53:604–617.

Barrile, R., A.D. van der Meer, H. Park, J.P. Fraser, D. Simic, F. Teng, D. Conegliano, J. Nguyen, A. Jain, M. Zhou, K. Karalis, D.E. Ingber, G.A. Hamilton, and M.A. Otieno. 2018. Organ-on-Chip Recapitulates Thrombosis Induced by an anti-CD154 Monoclonal Antibody: Translational Potential of Advanced Microengineered Systems. Clin. Pharmacol. Ther. 104:1240–1248.

Beckermann, B.M., G. Kallifatidis, A. Groth, D. Frommhold, A. Apel, J. Mattern, A. V. Salnikov, G. Moldenhauer, W. Wagner, A. Diehlmann, R. Saffrich, M. Schubert, A.D. Ho, N. Giese, M.W. Büchler, H. Friess, P. Büchler, and I. Herr. 2008. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br. J. Cancer. 99:622–631.

Bernabeu, M.O., M.L. Jones, J.H. Nielsen, T. Krüger, R.W. Nash, D. Groen, S. Schmieschek, J. Hetherington, H. Gerhardt, C.A. Franco, and P. V Coveney. 2014. Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis. Interface. 11:1–17.

Bogorad, M.I., J. DeStefano, J. Karlsson, A.D. Wong, S. Gerecht, and P.C. Searson. 2015. Review: In vitro microvessel models. Lab Chip. 15:4242–4255.

Boyer, J.L. 1996. Bile duct epithelium: Frontiers in transport physiology. Am. J. Physiol.- Gastrointest. Liver Physiol. 270:1–5.

Brennan, M.P., A. Dardik, N. Hibino, J.D. Roh, G.N. Nelson, X. Papademitris, T. Shinoka, and C.K. Breuer. 2008. Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann. Surg. 248:370–376.

Bruinsma, B.G., Y. Kim, T.A. Berendsen, S. Ozer, and B.E. Uygun. 2015. Layer-by-layer heparinization of decellularized liver matrices to reduce thrombogenicity of tissue engineered grafts. J. Clin. Transl. Res. 1:1–17.

Buchanan, C.F., S.S. Verbridge, P.P. Vlachos, and M.N. Rylander. 2014. Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model. Cell Adh. Migr. 8:517–524.

Budd, J.S., K.E. Allen, P.R.F. Bell, and R.F.L. James. 1990. The effect of varying fibronectin concentration on the attachment of endothelial cells to polytetrafluoroethylene vascular grafts. J. Vasc. Surg. 12:126–130.

Bussmann, J., S.A. Wolfe, and A.F. Siekmann. 2011. Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling. Development. 138:1717–1726.

Caplan, A.L. 2016. Finding a solution to the organ shortage. Can. Med. Assoc. J. 188:1182–1183.

Caralt, M., J.S. Uzarski, S. Iacob, K.P. Obergfell, N. Berg, B.M. Bijonowski, K.M. Kiefer, H.H. Ward, A. Wandinger-Ness, W.M. Miller, Z.J. Zhang, M.M. Abecassis, and J.A. Wertheim. 2015. Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transpl. 15:64–75.

Carrion, B., C.P. Huang, C.M. Ghajar, S. Kachgal, E. Kniazeva, N.L. Jeon, and A.J. Putnam. 2010. Recreating the Perivascular Niche Ex Vivo Using a Microfluidic Approach. Biotechnol. Bioeng. 107:1020–1028.

Cheng, G., S. Liao, H.K. Wong, D.A. Lacorre, E. Di Tomaso, P. Au, D. Fukumura, R.K. Jain, and L.L. Munn. 2011. Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood. 118:4740–4749.

Chung, S., R. Sudo, P.J. MacK, C.R. Wan, V. Vickerman, and R.D. Kamm. 2009. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip. 9:269–275.

Cines, D.B., E.S. Pollak, C.A. Buck, J. Loscalzo, G.A. Zimmerman, R.P. McEver, J.S. Pober, T.M. Wick, B.A. Konkle, B.S. Schwartz, E.S. Barnathan, K.R. McCrae, B.A. Hug, A.-M. Schmidt, and D.M. Stern. 1998. Endothelial Cells in Physiology and in the Pathophysiology of Vascular Disorders. Blood. 91:3527–3561.

Colgan, O.C., G. Ferguson, N.T. Collins, R.P. Murphy, G. Meade, P.A. Cahill, and P.M. Cummins. 2007. Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress. Am. J. Physiol. Circ. Physiol. 292:3190–3197.

Cox, B., and A. Emili. 2006. Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat. Protoc. 1:1872–1878.

Crapo, P.M., T.W. Gilbert, and S.F. Badylak. 2011. An overview of tissue and whole organ decellularization processes. Biomaterials. 32:3233–3243.

Damania, A., E. Jain, and A. Kumar. 2014. Advancements in in vitro hepatic models: Application for drug screening and therapeutics. Hepatol. Int. 8:23–38.

Davis, C.A., S. Zambrano, P. Anumolu, A.C.B. Allen, L. Sonoqui, and M.R. Moreno. 2015. Device-Based In Vitro Techniques for Mechanical Stimulation of Vascular Cells: A Review. J. Biomech. Eng. 137:1–22.

Deanfield, J.E., J.P. Halcox, and T.J. Rabelink. 2007. Endothelial function and dysfunction: Testing and clinical relevance. Circulation. 115:1285–1295.

Debbaut, C., D. De Wilde, C. Casteleyn, P. Cornillie, D. Van Loo, L. Van Hoorebeke, D. Monbaliu, Y.D. Fan, and P. Segers. 2012. Modeling the impact of partial hepatectomy on the hepatic hemodynamics using a rat model. IEEE Trans. Biomed. Eng. 59:3293–3303.

Devalliere, J., Y. Chen, K. Dooley, M.L. Yarmush, and B.E. Uygun. 2018. Improving functional re-endothelialization of acellular liver scaffold using REDV cell-binding domain. Acta Biomater. 78:151–164.

Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, D.P. 1981. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 103:177–185.

van Duinen, V., D. Zhu, C. Ramakers, A.J. van Zonneveld, P. Vulto, and T. Hankemeier. 2019. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform. Angiogenesis. 22:157–165.

Elias, H. 1949. A re-examiation of the structure of the mammalian liver. Am. J. Anat. 84:311–333.

Esmon, C.T. 1995. Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface. FASEB J. 9:946–955.

Even-Ram, S., and K.M. Yamada. 2005. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17:524–532.

Fisher, R.A., and S.C. Strom. 2006. Human hepatocyte transplantation: Worldwide results. Transplantation. 82:441–449.

Fox, I.J., J.R. Chowdhury, S.S. Kaufman, T.C. Goertzen, N.R. Chowdhury, P.I. Warkentin, K. Dorko, B. V. Sauter, and S.C. Strom. 1998. Treatment of the Crigler- Najjar syndrome type I with hepatocyte transplantation. N. Engl. J. Med. 338:1422– 1426.

Funahashi, Y., C.J. Shawber, A. Sharma, E. Kanamaru, Y.K. Choi, and J. Kitajewski. 2011. Notch modulates VEGF action in endothelial cells by inducing Matrix Metalloprotease activity. Vasc. Cell. 3:1–12.

Galie, P.A., D.-H.T. Nguyen, C.K. Choi, D.M. Cohen, P.A. Janmey, and C.S. Chen. 2014. Fluid shear stress threshold regulates angiogenic sprouting. Proc. Natl. Acad. Sci. 111:7968–7973.

Gerhardt, H. 2008. VEGF and endothelial guidance in angiogenic sprouting. Organogenesis. 4:241–246.

Ghaffari, S., R.L. Leask, and E.A. V Jones. 2015. Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis. Development. 142:4151–7.

Gilbert, T.W., S. Wognum, E.M. Joyce, D.O. Freytes, M.S. Sacks, and S.F. Badylak. 2008. Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials. 29:4775–4782.

Gilpin, A., and Y. Yang. 2017. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed Res. Int. 2017:1–13.

Gordillo, M., T. Evans, and V. Gouon-Evans. 2015. Orchestrating liver development. Development. 142:2094–2108.

Gray, K.M., and K.M. Stroka. 2017. Vascular endothelial cell mechanosensing: New insights gained from biomimetic microfluidic models. Semin. Cell Dev. Biol. 71:106–117.

Grigoryan, B., S.J. Paulsen, D.C. Corbett, D.W. Sazer, C.L. Fortin, A.J. Zaita, P.T. Greenfield, N.J. Calafat, J.P. Gounley, A.H. Ta, F. Johansson, A. Randles, J.E. Rosenkrantz, J.D. Louis-Rosenberg, P.A. Galie, K.R. Stevens, and J.S. Miller. 2019. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 364:458–464.

Guyette, J.P., S.E. Gilpin, J.M. Charest, L.F. Tapias, X. Ren, and H.C. Ott. 2014. Perfusion decellularization of whole organs. Nat. Protoc. 9:1451–1468.

Haga, J., M. Shimazu, G. Wakabayashi, M. Tanabe, S. Kawachi, Y. Fuchimoto, K.H. Yasuhide, M. Masaki, K. Masaki, and Y. Kitagawa. 2008. Liver regeneration in donors and adult recipients after living donor liver transplantation. Liver Transplant. 14:1718–1724.

Han, S., Y. Shin, H.E. Jeong, J.S. Jeon, R.D. Kamm, D. Huh, L.L. Sohn, and S. Chung. 2015. Constructive remodeling of a synthetic endothelial extracellular matrix. Sci. Reports. 5:1–10.

Hashimoto, W., R. Sudo, K. Fukasawa, M. Ikeda, T. Mitaka, and K. Tanishita. 2008. Ductular network formation by rat biliary epithelial cells in the dynamical culture with collagen gel and dimethylsulfoxide stimulation. Am. J. Pathol. 173:494–506.

Hasso, S., and J. Chan. 2011. Chemical Approaches to Angiogenesis in Development and Regeneration. Methods Cell Biol. 101:181–195.

Helm, C.-L.E., M.E. Fleury, A.H. Zisch, F. Boschetti, and M.A. Swartz. 2005. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. U. S. A. 102:15779– 15784.

Herity, N.A., M.R. Ward, S. Lo, and A.C. Yeung. 1999. Review: Clinical Aspects of Vascular Remodeling. J. Cardiovasc. Electrophysiol. 10:1016–1024.

Herwig, L., Y. Blum, A. Krudewig, E. Ellertsdottir, A. Lenard, H.G. Belting, and M. Affolter. 2011. Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr. Biol. 21:1942–1948.

Higgins, G.M., and R.M. Anderson. 1931. Experimental Pathology of the Liver. Restoration of the Liver of the White Rat Following Partial Surgical Removal. Am. Med. Assoc. Arch. Pathol. 12:186–202.

Hirschi, K.K., and P.A. D’Amore. 1996. Pericytes in the microvasculature. Cardiovasc. Res. 32:687–698.

Hodde, J., A. Janis, D. Ernst, D. Zopf, D. Sherman, and C. Johnson. 2007. Effects of sterilization on an extracellular matrix scaffold: Part I. Composition and matrix architecture. J. Mater. Sci. Mater. Med. 18:537–543.

Hofmann, A.F. 1988. Bile Salts As Biological Surfactants. Colloids and Surfaces. 30:145–173.

Hong, J.C., R. Venick, H. Yersiz, P. Kositamongkol, F.M. Kaldas, H. Petrowsky, D.G. Farmer, V. Agopian, S. V. McDiarmid, J.R. Hiatt, and R.W. Busuttil. 2014. Liver transplantation in children using organ donation after circulatory death: A case- control outcomes analysis of a 20-year experience in a single center. JAMA Surg. 149:77–82.

Hsu, Y.H., M.L. Moya, P. Abiri, C.C.W. Hughes, S.C. George, and A.P. Lee. 2013. Full range physiological mass transport control in 3D tissue cultures. Lab Chip. 13:81– 89.

Huang, Y., D. Tong, S. Zhu, L. Wu, Q. Mao, Z. Ibrahim, W.P.A. Lee, G. Brandacher, and J.U. Kang. 2015. Evaluation of microvascular anastomosis using real-time, ultra-high-resolution, fourier domain doppler optical coherence tomography. Plast. Reconstr. Surg. 135:711–720.

Hussein, K.H., K.-M. Park, K.-S. Kang, and H.-M. Woo. 2016. Heparin-gelatin mixture improves vascular reconstruction efficiency and hepatic function in bioengineered livers. Acta Biomater. 38:82–93.

Ishibazawa, A., T. Nagaoka, T. Takahashi, K. Yamamoto, A. Kamiya, J. Ando, and A. Yoshida. 2011. Effects of Shear Stress on the Gene Expressions of Endothelial Nitric Oxide Synthase, Endothelin-1, and Thrombomodulin in Human Retinal Microvascular Endothelial Cells. Investig. Opthalmology Vis. Sci. 52:8496–8504.

Jadlowiec, C.C., T. Taner, and W.J. Von. 2016. Liver transplantation: Current status and challenges. World J Gastroenterol. 22:4438–4445.

Jain, A., A.D. van der Meer, A.L. Papa, R. Barrile, A. Lai, B.L. Schlechter, M.A. Otieno, C.S. Louden, G.A. Hamilton, A.D. Michelson, A.L. Frelinger, and D.E. Ingber. 2016. Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium. Biomed. Microdevices. 18:1–7.

Japan OrganTransplant Network. 2019. 2019 Japan OrganTransplant Network.

Jeon, J.S., S. Bersini, J.A. Whisler, M.B. Chen, G. Dubini, J.L. Charest, M. Moretti, and R.D. Kamm. 2014. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr. Biol. 6:555–563.

Jeong, G.S., S. Han, Y. Shin, G.H. Kwon, R.D. Kamm, S.H. Lee, and S. Chung. 2011. Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Anal. Chem. 83:8454–8459.

Ji, R., N. Zhang, N. You, Q. Li, W. Liu, N. Jiang, J. Liu, H. Zhang, D. Wang, K. Tao, and K. Dou. 2012. The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice. Biomaterials. 33:8995–9008.

Jung, Y., H. Ji, Z. Chen, H. Fai Chan, L. Atchison, B. Klitzman, G. Truskey, and K.W. Leong. 2015. Scaffold-free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels. Sci. Rep. 5:1–9.

Kadota, Y., H. Yagi, K. Inomata, K. Matsubara, T. Hibi, Y. Abe, M. Kitago, M. Shinoda, H. Obara, O. Itano, and Y. Kitagawa. 2014. Mesenchymal stem cells support hepatocyte function in engineered liver grafts. Organogenesis. 10:268–277.

Kang, H., K. Bayless, and R. Kaunas. 2008. Fluid shear stress modulates endothelial cell invasion into three-dimensional collagen matrices. Am. J. Physiol. Circ. Physiol. 295:2087–2097.

Kasuya, J., R. Sudo, G. Masuda, T. Mitaka, M. Ikeda, and K. Tanishita. 2015. Reconstruction of hepatic stellate cell-incorporated liver capillary structures in small hepatocyte tri-culture using microporous membranes. J. Tissue Eng. Regen. Med. 9:247–256.

Kasuya, J., R. Sudo, R. Tamogami, G. Masuda, T. Mitaka, M. Ikeda, and K. Tanishita. 2012. Reconstruction of 3D stacked hepatocyte tissues using degradable, microporous poly(D,L-lactide-co-glycolide) membranes. Biomaterials. 33:2693– 2700.

Kido, T., Y. Koui, K. Suzuki, A. Kobayashi, Y. Miura, E.Y. Chern, M. Tanaka, and A. Miyajima. 2015. CPM is a useful cell surface marker to isolate expandable bi- potential liver progenitor cells derived from human iPS cells. Stem Cell Reports. 5:508–515.

Kim, S., H. Lee, M. Chung, and N.L. Jeon. 2013. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip. 13:1489–1500.

Kmiec, Z. 2001. Cooperation of liver cells in health and disease. Adv. Anat. Embryol. Cell Biol. 161:1–151.

Ko, I.K., L. Peng, A. Peloso, C.J. Smith, A. Dhal, D.B. Deegan, C. Zimmerman, C. Clouse, W. Zhao, T.D. Shupe, S. Soker, J.J. Yoo, and A. Atala. 2015. Bioengineered transplantable porcine livers with re-endothelialized vasculature. Biomaterials. 40:72–79.

Koike, H., K. Iwasawa, R. Ouchi, M. Maezawa, K. Giesbrecht, N. Saiki, A. Ferguson, M. Kimura, W.L. Thompson, J.M. Wells, A.M. Zorn, and T. Takebe. 2019. Modelling human hepato-biliary-pancreatic organogenesis from the foregut–midgut boundary. Nature. 574:112–116.

Kojima, H., K. Yasuchika, K. Fukumitsu, T. Ishii, S. Ogiso, Y. Miyauchi, R. Yamaoka, T. Kawai, H. Katayama, E.Y. Yoshitoshi-Uebayashi, S. Kita, K. Yasuda, N. Sasaki, J. Komori, and S. Uemoto. 2018. Establishment of practical recellularized liver graft for blood perfusion using primary rat hepatocytes and liver sinusoidal endothelial cells. Am. J. Transplant. 1–9.

Korshunov, V.A., S.M. Schwartz, and B.C. Berk. 2007. Vascular remodeling: Hemodynamic and biochemical mechanisms underlying Glagov’s phenomenon. Arterioscler. Thromb. Vasc. Biol. 27:1722–1728.

Koui, Y., T. Kido, T. Ito, H. Oyama, S.W. Chen, Y. Katou, K. Shirahige, and A. Miyajima. 2017. An In Vitro Human Liver Model by iPSC-Derived Parenchymal and Non- parenchymal Cells. Stem Cell Reports. 9:490–498.

Langer, R., and J.P. Vacanti. 1993. Tissue engineering. Science. 260:920–926.

Lee, E.J., G. Vunjak-Novakovic, Y. Wang, and L.E. Niklason. 2009. A biocompatible endothelial cell delivery system for in vitro tissue engineering. Cell Transplant. 18:731–743.

Lehr, E.J., G.R. Rayat, B. Chiu, T. Churchill, L.E. McGann, J.Y. Coe, and D.B. Ross. 2011. Decellularization reduces immunogenicity of sheep pulmonary artery vascular patches. J. Thorac. Cardiovasc. Surg. 141:1056–1062.

Lenard, A., E. Ellertsdottir, L. Herwig, A. Krudewig, L. Sauteur, H.G. Belting, and M. Affolter. 2013. In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev. Cell. 25:492–506.

Lieber, C.S. 2000. Alcohol: Its metabolism and interaction with nutrients. Annu. Rev. Nutr. 20:395–430.

Lin, S.-Z., R.-H. Fu, Y.-C. Wang, S.-P. Liu, T.-R. Shih, H.-L. Lin, Y.-M. Chen, J.-H. Sung, C.-H. Lu, J.-R. Wei, Z.-W. Wang, S.-J. Huang, C.-H. Tsai, and W.-C. Shyu. 2014. Decellularization and Recellularization Technologies in Tissue Engineering. Cell Transplant. 23:621–630.

Liu, L., B.D. Ratner, E.H. Sage, and S. Jiang. 2007. Endothelial cell migration on surface- density gradients of fibronectin, VEGF, or both proteins. Langmuir. 23:11168– 11173.

Mabuchi, Y., S. Morikawa, S. Harada, K. Niibe, S. Suzuki, F. Renault-Mihara, D.D. Houlihan, C. Akazawa, H. Okano, and Y. Matsuzaki. 2013. LNGFR+THY- 1+VCAM-1hi+ cells reveal functionally distinct subpopulations in mesenchymal stem cells. Stem Cell Reports. 1:152–165.

Mannino, R.G., D.R. Myers, B. Ahn, Y. Wang, Margo Rollins, H. Gole, A.S. Lin, R.E. Guldberg, D.P. Giddens, L.H. Timmins, and W.A. Lam. 2015. Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial- blood cell interactions. Sci. Rep. 5:1–12.

Martinez-Hernandez, A., and P.S. Amenda. 1995. The extracellular matrix in hepatic regeneration. FASEB J. 9:1401–1410.

Maslak, E., A. Gregorius, and S. Chlopicki. 2015. Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO-based therapy targeted to the liver. Pharmacol. Reports. 67:689–694.

McFadden, T.M., G.P. Duffy, A.B. Allen, H.Y. Stevens, S.M. Schwarzmaier, N. Plesnila, J.M. Murphy, F.P. Barry, R.E. Guldberg, and F.J. O’Brien. 2013. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo. Acta Biomater. 9:9303–9316.

van der Meer, A.D., A.A. Poot, J. Feijen, and I. Vermes. 2010. Analyzing shear stress- induced alignment of actin filaments in endothelial cells with a microfluidic assay. Biomicrofluidics. 4:1–5.

Meng, F., F. Almohanna, A. Altuhami, A.M. Assiri, and D. Broering. 2019. Vasculature reconstruction of decellularized liver scaffolds via gelatin-based re- endothelialization. J. Biomed. Mater. Res. Part A. 107:392–402.

Michalopoulos, G.K., and M.C. DeFrances. 1997. Liver Regeneration. Scinece. 276:60– 66.

Mina, S.G., W. Wang, Q. Cao, P. Huang, B.T. Murray, and G.J. Mahler. 2016. Shear stress magnitude and transforming growth factor-beta 1 regulate endothelial to mesenchymal transformation in a three-dimensional culture microfluidic device. RSC Adv. 6:85457–85467.

Mironov, V., V. Kasyanov, and R.R. Markwald. 2011. Organ printing: From bioprinter to organ biofabrication line. Curr. Opin. Biotechnol. 22:667–673.

Moran, E.C., P.M. Baptista, D.W. Evans, S. Soker, and J.L. Sparks. 2012. Evaluation of parenchymal fluid pressure in native and decellularized liver tissue. Biomed. Sci. Instrum. 48:303–309.

Morita, M., W. Qun, H. Watanabe, Y. Doi, M. Mori, and K. Enomoto. 1998. Analysis of the sinusoidal endothelial cell organization during the developmental stage of the fetal rat liver using a sinusoidal endothelial cell specific antibody, SE-1. Cell Struct. Funct. 23:341–348.

Murphy, S.L., J. Xu, K.D. Kochanek, S.C. Curtin, and E. Arias. 2015. Deaths: Final Data for 2015. Natl. Vital Stat. Reports. 66:1–75.

Nassiri, S.M., and R. Rahbarghazi. 2014. Interactions of Mesenchymal Stem Cells with Endothelial Cells. Stem Cells Dev. 23:319–332.

Nicosia, R.F., E. Bonanno, and M. Smith. 1993. Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J. Cell. Physiol. 154:654–661.

Nirmalanandhan, V.S., M.S. Levy, A.J. Huth, and D.L. Butler. 2006. Effects of Cell Seeding Density and Collagen Concentration on Contraction Kinetics of Mesenchymal Stem Cell–Seeded Collagen Constructs. Tissue Eng. 12:1865–1872.

Nishii, K., G. Reese, E.C. Moran, and J.L. Sparks. 2016. Multiscale computational model of fluid flow and matrix deformation in decellularized liver. J. Mech. Behav. Biomed. Mater. 57:201–214.

Noor, N., A. Shapira, R. Edri, I. Gal, L. Wertheim, and T. Dvir. 2019. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Adv. Sci. 6:1970066 (10 pages).

Ogiso, S., K. Yasuchika, K. Fukumitsu, T. Ishii, H. Kojima, Y. Miyauchi, R. Yamaoka, J. Komori, H. Katayama, T. Kawai, E.Y. Yoshitoshi, S. Kita, K. Yasuda, and S. Uemoto. 2016. Efficient recellularisation of decellularised whole-liver grafts using biliary tree and foetal hepatocytes. Sci. Rep. 6:1–10.

Palakkan, A.A., D.C. Hay, A.K. Pr, K. Tv, and J.A. Ross. 2013. Liver tissue engineering and cell sources: issues and challenges. Liver Int. 33:666–676.

dela Paz, N.G., T.E. Walshe, L.L. Leach, M. Saint-Geniez, and P.A. D ’amore. 2012. Role of shear-stress-induced VEGF expression in endothelial cell survival. J. Cell Sci. 125:831–843.

Pereira, F.D.A.S., V. Parfenov, Y.D. Khesuani, A. Ovsianikov, and V. Mironov. 2018. Commercial 3D Bioprinters. In 3D Printing and Biofabrication. A. Ovsianikov, J. Yoo, and V. Mironov, editors. 535–549.

Poisson, J., S. Lemoinne, C. Boulanger, F. Durand, R. Moreau, D. Valla, and P.-E. Rautou. 2017. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J. Hepatol. 66:212–227.

Pomfret, E.A., J.J. Pomposelli, F.D. Gordon, N. Erbay, L.L. Price, W.D. Lewis, and R.L. Jenkins. 2003. Liver regeneration and surgical outcome in donors of right-lobe liver grafts. Transplantation. 76:5–10.

Prasertsung, I., S. Kanokpanont, T. Bunaprasert, V. Thanakit, and S. Damrongsakkul. 2007. Development of acellular dermis from porcine skin using periodic pressurized technique. J. Biomed. Mater. Res. - Part B Appl. Biomater. 85:210–219.

Price, G.M., K.H.K. Wong, J.G. Truslow, A.D. Leung, C. Acharya, and J. Tien. 2010. Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials. 31:6182–6189.

Qiu, Y., A.C. Brown, D.R. Myers, Y. Sakurai, R.G. Mannino, R. Tran, B. Ahn, E.T. Hardy, M.F. Kee, S. Kumar, G. Bao, T.H. Barker, and W.A. Lam. 2014. Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc. Natl. Acad. Sci. U. S. A. 111:14430–14435.

Quint, C., Y. Kondo, R.J. Manson, J.H. Lawson, A. Dardik, and L.E. Niklason. 2011. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc. Natl. Acad. Sci. 108:9214–9219.

Rennier, K., and J.Y. Ji. 2012. Shear stress regulates expression of death-associated protein kinase in suppressing TNFα-induced endothelial apoptosis. J. Cell. Physiol. 227:2398–2411.

Rezakhaniha, R., A. Agianniotis, J.T.C. Schrauwen, A. Griffa, D. Sage, C.V.C. Bouten, F.N. Van De Vosse, · M Unser, · N Stergiopulos, N. Stergiopulos, and M. Unser. 2012. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol. 11:461–473.

Ribatti, D., B. Nico, and E. Crivellato. 2011. The role of pericytes in angiogenesis. Int. J. Dev. Biol. 55:261–268.

Rodrigues, S.F., and D.N. Granger. 2015. Blood cells and endothelial barrier function. Tissue Barriers. 3:1–2.

Rouwkema, J., and A. Khademhosseini. 2016. Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks. Trends Biotechnol. 34:733– 745.

Ruggeri, Z.M., and G.L. Mendolicchio. 2007. Adhesion mechanisms in platelet function. Circ. Res. 100:1673–1685.

Sakai, Y., K. Yamanouchi, K. Ohashi, M. Koike, R. Utoh, H. Hasegawa, I. Muraoka, T. Suematsu, A. Soyama, M. Hidaka, M. Takatsuki, T. Kuroki, and S. Eguchi. 2015. Vascularized subcutaneous human liver tissue from engineered hepatocyte/fibroblast sheets in mice. Biomaterials. 65:66–75.

Sauer, I.M., M. Goetz, I. Steffen, G. Walter, D.C. Kehr, R. Schwartlander, Y.J. Hwang, A. Pascher, J.C. Gerlach, and P. Neuhaus. 2004. In Vitro Comparison of the Molecular Adsorbent Recirculation System (MARS) and Single-pass Albumin Dialysis (SPAD). Hepatology. 39:1408–1414.

Sekine, H., T. Shimizu, K. Sakaguchi, I. Dobashi, M. Wada, M. Yamato, E. Kobayashi, M. Umezu, and T. Okano. 2013. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat. Commun. 4:1310–1399.

Shamloo, A., H. Xu, and S. Heilshorn. 2012. Mechanisms of vascular endothelial growth factor-induced pathfinding by endothelial sprouts in biomaterials. Tissue Eng. - Part A. 18:320–330.

Shimoda, H., H. Yagi, H. Higashi, K. Tajima, K. Kuroda, Y. Abe, M. Kitago, M. Shinoda, and Y. Kitagawa. 2019. Decellularized liver scaffolds promote liver regeneration after partial hepatectomy. Sci. Rep. 9:1–11.

Shin, Y., S. Han, J.S. Jeon, K. Yamamoto, I.K. Zervantonakis, R. Sudo, R.D. Kamm, and S. Chung. 2012. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat. Protoc. 7:1247–1259.

Shirakigawa, N., H. Ijima, and T. Takei. 2012. Decellularized liver as a practical scaffold with a vascular network template for liver tissue engineering. J. Biosci. Bioeng. 114:546–551.

Shirakigawa, N., T. Takei, and H. Ijima. 2013. Base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering. J. Biosci. Bioeng. 116:740–745.

Sigovan, M., V. Rayz, W. Gasper, H.F. Alley, C.D. Owens, and D. Saloner. 2013. Vascular Remodeling in Autogenous Arterio-Venous Fistulas by MRI and CFD. Ann. Biomed. Eng. 41:657–668.

Sobrino, A., D.T.T. Phan, R. Datta, X. Wang, S.J. Hachey, M. Romero-López, E. Gratton, A.P. Lee, S.C. George, and C.C.W. Hughes. 2016. 3D microtumors in vitro supported by perfused vascular networks. Sci. Rep. 6:1–11.

Song, J.W., D. Bazou, L.L. Munn, and E.L. Steele. 2012. Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integr. Biol. 4:857– 862.

Song, J.W., and L.L. Munn. 2011. Fluid forces control endothelial sprouting. Proc. Natl. Acad. Sci. U. S. A. 108:15342–15347.

Soto-Gutierrez, A., L. Zhang, C. Medberry, K. Fukumitsu, D. Faulk, H. Jiang, J. Reing, R. Gramignoli, J. Komori, M. Ross, M. Nagaya, E. Lagasse, D. Stolz, S.C. Strom, I.J. Fox, and S.F. Badylak. 2011. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng. Part C. 17:677–86.

Stevens, K.R., M.A. Scull, V. Ramanan, C.L. Fortin, R.R. Chaturvedi, K.A. Knouse, J.W. Xiao, C. Fung, T. Mirabella, A.X. Chen, M.G. Mccue, M.T. Yang, H.E. Fleming, K. Chung, Y.P. De Jong, C.S. Chen, C.M. Rice, and S.N. Bhatia. 2017. In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Sci. Transl. Med. 9:1–10.

Strom, S., and R. Fisher. 2003. Hepatocyte transplantation: New possibilities for therapy. Gastroenterology. 124:568–571.

Sudo, R. 2014. Multiscale tissue engineering for liver reconstruction. Organogenesis. 10:1–9.

Sudo, R., S. Chung, I.K. Zervantonakis, V. Vickerman, Y. Toshimitsu, L.G. Griffith, and R.D. Kamm. 2009. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J. 23:2155–2164.

Takayama, K., M. Inamura, K. Kawabata, M. Sugawara, K. Kikuchi, M. Higuchi, Y. Nagamoto, H. Watanabe, K. Tashiro, F. Sakurai, T. Hayakawa, M.K. Furue, and H. Mizuguchi. 2012. Generation of metabolically functioning hepatocytes from human pluripotent stem cells by FOXA2 and HNF1α transduction. J. Hepatol. 57:628–636.

Takayama, K., Y. Morisaki, S. Kuno, Y. Nagamoto, K. Harada, N. Furukawa, M. Ohtaka, K. Nishimura, K. Imagawa, F. Sakurai, M. Tachibana, R. Sumazaki, E. Noguchi, M. Nakanishi, K. Hirata, K. Kawabata, and H. Mizuguchi. 2014. Prediction of interindividual differences in hepatic functions and drug sensitivity by using human iPS-derived hepatocytes. Proc. Natl. Acad. Sci. U. S. A. 111:16772–16777.

Takebe, T., N. Koike, K. Sekine, R. Fujiwara, T. Amiya, Y.-W. Zheng, and H. Taniguchi. 2014. Engineering of human hepatic tissue with functional vascular networks. Organogenesis. 10:260–267.

Takebe, T., K. Sekine, M. Enomura, H. Koike, M. Kimura, T. Ogaeri, R.-R. Zhang, Y. Ueno, Y.-W. Zheng, N. Koike, S. Aoyama, Y. Adachi, and H. Taniguchi. 2013. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 499:481–4.

Takebe, T., K. Sekine, M. Kimura, E. Yoshizawa, S. Ayano, M. Koido, S. Funayama, N. Nakanishi, T. Hisai, T. Kobayashi, T. Kasai, R. Kitada, A. Mori, H. Ayabe, Y. Ejiri, N. Amimoto, Y. Yamazaki, S. Ogawa, M. Ishikawa, Y. Kiyota, Y. Sato, K. Nozawa, S. Okamoto, Y. Ueno, and H. Taniguchi. 2017. Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells. Cell Rep. 21:2661–2670.

Tatsumi, K., and T. Okano. 2017. Hepatocyte Transplantation: Cell Sheet Technology for Liver Cell Transplantation. Curr. Transplant. Reports. 4:184–192.

Ueda, A., M. Koga, M. Ikeda, S. Kudo, and K. Tanishita. 2004. Effect of shear stress on microvessel network formation of endothelial cells with in vitro three-dimensional model. Am. J. Physiol. Circ. Physiol. 287:994–1002.

Ueda, A., R. Sudo, M. Ikeda, S. Kudo, and K. Tanishita. 2006. Initial bFGF Distribution Affects the Depth of Three-dimensional Microvessel Networks in vitro. J. Biomech. Sci. Eng. 1:136–146.

Unsworth, D.J., D.L. Scott, T.J. Almond, H.K. Beard, E.J. Holborow, and K.W. Walton. 1982. Studies on reticulin. I: Serological and immunohistological investigations of the occurrence of collagen type III, fibronectin and the non-collagenous glycoprotein of Pras and Glynn in reticulin. Br J Exp Pathol. 63:154–166.

Urbich, C., E. Dernbach, A. Reissner, M. Vasa, A.M. Zeiher, and S. Dimmeler. 2002. Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits α5 and β1. Arterioscler. Thromb. Vasc. Biol. 22:69–75.

Uwamori, H., Y. Ono, T. Yamashita, K. Arai, and R. Sudo. 2019. Comparison of organ- specific endothelial cells in terms of microvascular formation and endothelial barrier functions. Microvasc. Res. 122:60–70.

Uygun, B.E., A. Soto-Gutierrez, H. Yagi, M.-L. Izamis, M.A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, F. Berthiaume, M. Hertl, Y. Nahmias, M.L. Yarmush, and K. Uygun. 2010. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16:814–20.

Vernon, R.B., and E.H. Sage. 1995. Between molecules and morphology. Extracellular matrix and creation of vascular form. Am. J. Pathol. 147:873–83.

Wang, X., D.T.T. Phan, A. Sobrino, S.C. George, C.C.W. Hughes, and A.P. Lee. 2016. Engineering anastomosis between living capillary networks and endothelial cell- lined microfluidic channels. Lab Chip. 16:282–290.

Wang, X., Q. Sun, and J. Pei. 2018. Microfluidic-based 3D engineered microvascular networks and their applications in vascularized microtumor models. Micromachines. 9:1–26.

Watanabe, M., and R. Sudo. 2019. Establishment of an in vitro vascular anastomosis model in a microfluidic device. J. Biomech. Sci. Eng. 14:1–17.

Watanabe, M., K. Yano, K. Okawa, T. Yamashita, K. Tajima, K. Sawada, H. Yagi, Y. Kitagawa, K. Tanishita, and R. Sudo. 2019. Construction of sinusoid-scale microvessels in perfusion culture of a decellularized liver. Acta Biomater. 95:307– 318.

Weidenhamer, N.K., D.L. Moore, F.L. Lobo, N.T. Klair, and R.T. Tranquillo. 2015. Influence of culture conditions and extracellular matrix alignment on human mesenchymal stem cells invasion into decellularized engineered tissues. J. Tissue Eng. Regen. Med. 9:605–618.

Woods, T., and P.F. Gratzer. 2005. Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials. 26:7339–7349.

Wragg, J.W., S. Durant, H.M. Mcgettrick, K.M. Sample, S. Egginton, and R. Bicknell. 2014. Shear stress regulated gene expression and angiogenesis in vascular endothelium. Microcirculation. 21:290–300.

Wu, Y., M.A. Al-Ameen, and G. Ghosh. 2014. Integrated Effects of Matrix Mechanics and Vascular Endothelial Growth Factor (VEGF) on Capillary Sprouting. Ann. Biomed. Eng. 42:1024–1036.

Xu, J., S.L. Murphy, K.D. Kochanek, B. Bastian, and E. Arias. 2018. Deaths: Final Data for 2016. Natl. Vital Stat. Reports. 67:1–76.

Yagi, H., K. Fukumitsu, K. Fukuda, M. Kitago, M. Shinoda, H. Obara, O. Itano, S. Kawachi, M. Tanabe, G.M. Coudriet, J.D. Piganelli, T.W. Gilbert, A. Soto-Gutierrez, and Y. Kitagawa. 2013. Human-scale whole-organ bioengineering for liver transplantation: A regenerative medicine approach. Cell Transplant. 22:231–242.

Yamamoto, K., T. Takahashi, T. Asahara, N. Ohura, T. Sokabe, A. Kamiya, and J. Ando. 2003. Proliferation , differentiation , and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol. 95:2081–2088.

Yamamoto, K., K. Tanimura, Y. Mabuchi, Y. Matsuzaki, S. Chung, R.D. Kamm, M. Ikeda, K. Tanishita, and R. Sudo. 2013. The stabilization effect of mesenchymal stem cells on the formation of microvascular networks in a microfluidic device. J. Biomech. Sci. Eng. 8:114–128.

Yamamoto, K., K. Tanimura, M. Watanabe, H. Sano, H. Uwamori, Y. Mabuchi, Y. Matsuzaki, S. Chung, R.D. Kamm, K. Tanishita, and R. Sudo. 2019. Construction of continuous capillary networks stabilized by pericyte-like perivascular cells. Tissue Eng. Part A. 25:499–510.

Yamamoto, M., and E. Tahara. 1984. Distribution of Collagen Types I, III, and V in Fibrotic and Neoplastic Human Liver. Acta Pathol. Jpn. 34:77–86.

Yamamura, N., R. Sudo, M. Ikeda, and K. Tanishita. 2007. Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng. 13:1443–1453.

Yeon, J.H., H.R. Ryu, M. Chung, Q.P. Hu, and N.L. Jeon. 2012. In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab Chip. 12:2815–2822.

Zandstra, P.W., E. Conneally, A.L. Petzer, J.M. Piret, and C.J. Eaves. 1997. Cytokine manipulation of primitive human hematopoietic cell self-renewal. Proc. Natl. Acad. Sci. U. S. A. 94:4698–703.

Zhou, Q., L. Li, and J. Li. 2015. Stem cells with decellularized liver scaffolds in liver regeneration and their potential clinical applications. Liver Int. 35:687–694.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る