リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「パルサータイミングアレイによるアクシオンダークマターへの制限」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

パルサータイミングアレイによるアクシオンダークマターへの制限

Kato, Ryo 加藤, 亮 カトウ, リョウ 神戸大学

2020.03.25

概要

An ultralight scalar field is a candidate for the dark matter. The Pulsar Timing Array offers a unique opportunity to search for the ultralight scalar field with mass around 10−23 eV. The dark matter makes up about 30 percent of the cosmic components, and the detection is very important. In particular, the ultralight scalar dark matter can solve the core-cusp problem of galactic halos.

We search for the ultralight scalar dark matter using the North American Nanohertz Observatory for Gravitational Waves 11-year Data Set. We give the 95% confidence upper limit for the energy density of the ultralight scalar dark matter near the Earth. In comparison with the published upper limits on the ultralight scalar dark matter using the Parkes Pulsar Timing Array 12-year data set (Porayko et al. 2018), we find three times stronger upper limit in the mass range from 9.45 × 10−24 to 1.34 × 10−23 eV. In terms of the energy density of the dark matter, we find that the energy density near the Earth is less than 7 GeV/cm3 in the range from 5.83 × 10−24 to 2.02 × 10−23 eV. The strongest upper limit on the the energy density is given by 2 GeV/cm3 at a mass 1.09 × 10−23 eV.

参考文献

[1] Peter Svrcek and Edward Witten. Axions In String Theory. JHEP, 06:051, 2006.

[2] Asimina Arvanitaki, Savas Dimopoulos, Sergei Dubovsky, Nemanja Kaloper, and John March-Russell. String Axiverse. Phys. Rev., D81:123530, 2010.

[3] Wayne Hu, Rennan Barkana, and Andrei Gruzinov. Fuzzy cold dark matter: The wave properties of ultralight particles. Phys. Rev. Lett., 85:1158–1161, Aug 2000.

[4] David J. E. Marsh. Axion Cosmology. Phys. Rept., 643:1–79, 2016.

[5] Andrei Khmelnitsky and Valery Rubakov. Pulsar timing signal from ultralight scalar dark matter. Journal of Cosmology and Astroparticle Physics, 2014(02):019–019, feb 2014.

[6] Michael Kramer and David J Champion. The european pulsar timing array and the large european array for pulsars. Classical and Quantum Gravity, 30(22):224009, nov 2013.

[7] M A McLaughlin. The north american nanohertz observatory for gravitational waves. Classical and Quantum Gravity, 30(22):224008, nov 2013.

[8] R. N. Manchester, G. Hobbs, M. Bailes, W. A. Coles, W. van Straten, M. J. Keith, R. M. Shannon, N. D. R. Bhat, A. Brown, S. G. Burke-Spolaor, and et al. The parkes pulsar timing array project. Publications of the Astronomical Society of Australia, 30:e017, 2013.

[9] G Hobbs, A Archibald, Z Arzoumanian, D Backer, M Bailes, N D R Bhat, M Bur- gay, S Burke-Spolaor, D Champion, I Cognard, W Coles, J Cordes, P Demorest, G Desvignes, R D Ferdman, L Finn, P Freire, M Gonzalez, J Hessels, A Hotan, G Janssen, F Jenet, A Jessner, C Jordan, V Kaspi, M Kramer, V Kondratiev, J Lazio, K Lazaridis, K J Lee, Y Levin, A Lommen, D Lorimer, R Lynch, A Lyne, R Manchester, M McLaughlin, D Nice, S Oslowski, M Pilia, A Possenti, M Purver, S Ransom, J Reynolds, S Sanidas, J Sarkissian, A Sesana, R Shannon, X Siemens, I Stairs, B Stappers, D Stinebring, G Theureau, R van Haasteren, W van Straten, J P W Verbiest, D R B Yardley, and X P You. The international pulsar timing ar- ray project: using pulsars as a gravitational wave detector. Classical and Quantum Gravity, 27(8):084013, apr 2010.

[10] N. K. Porayko and K. A. Postnov. Constraints on ultralight scalar dark matter from pulsar timing. Phys. Rev. D, 90:062008, Sep 2014.

[11] Nataliya K. Porayko et al. Parkes Pulsar Timing Array constraints on ultralight scalar-field dark matter. Phys. Rev., D98(10):102002, 2018.

[12] Takeshi Kobayashi, Riccardo Murgia, Andrea De Simone, Vid Irˇsiˇc, and Matteo Viel. Lyman-α constraints on ultralight scalar dark matter: Implications for the early and late universe. Physical Review D, 96(12):123514, Dec 2017.

[13] Alberto Diez-Tejedor and David J. E. Marsh. Cosmological production of ultralight dark matter axions. 2017.

[14] Lam Hui, Jeremiah P. Ostriker, Scott Tremaine, and Edward Witten. Ultralight scalars as cosmological dark matter. Phys. Rev. D, 95:043541, Feb 2017.

[15] Laura G. Book and Eanna E. Flanagan. Astrometric Effects of a Stochastic Gravi- tational Wave Background. Phys. Rev., D83:024024, 2011.

[16] Kimihiro Nomura, Asuka Ito, and Jiro Soda. Pulsar timing residual induced by ultralight vector dark matter. 2019.

[17] D. N. Matsakis, J. H. Taylor, and T. M. Eubanks. A statistic for describing pulsar and clock stabilities. A&A, 326:924–928, October 1997.

[18] E. Keane, B. Bhattacharyya, M. Kramer, B. Stappers, S. Bates, M. Burgay, Shami Chatterjee, D. Champion, R. Eatough, J. Hessels, G. Janssen, Kejia Lee, J. Leeuwen, J. Margueron, M. Oertel, Andrea Possenti, S. Ransom, Gilles Theureau, and Pablo Torne. A cosmic census of radio pulsars with the ska. 12 2014.

[19] Roger W. Romani. Timing a Millisecond Pulsar Array, pages 113–117. Springer Netherlands, 1989.

[20] R. S. Foster and D. C. Backer. Constructing a pulsar timing array. The Astrophysical Journal, 361:300–308, September 1990.

[21] J. P. W. Verbiest, L. Lentati, G. Hobbs, R. van Haasteren, P. B. Demorest, G. H. Janssen, J. B. Wang, G. Desvignes, R. N. Caballero, M. J. Keith, D. J. Cham- pion, Z. Arzoumanian, S. Babak, C. G. Bassa, N. D. R. Bhat, A. Brazier, P. Brem, M. Burgay, S. Burke-Spolaor, S. J. Chamberlin, S. Chatterjee, B. Christy, I. Cog- nard, J. M. Cordes, S. Dai, T. Dolch, J. A. Ellis, R. D. Ferdman, E. Fonseca, J. R. Gair, N. E. Garver-Daniels, P. Gentile, M. E. Gonzalez, E. Graikou, L. Guillemot, J. W. T. Hessels, G. Jones, R. Karuppusamy, M. Kerr, M. Kramer, M. T. Lam, P. D. Lasky, A. Lassus, P. Lazarus, T. J. W. Lazio, K. J. Lee, L. Levin, K. Liu, R. S. Lynch, A. G. Lyne, J. Mckee, M. A. McLaughlin, S. T. McWilliams, D. R. Madison, R. N. Manchester, C. M. F. Mingarelli, D. J. Nice, S. Os-lowski, N. T. Palliyaguru, T. T. Pennucci, B. B. P. Perera, D. Perrodin, A. Possenti, A. Petiteau, S. M. Ransom, D. Reardon, P. A. Rosado, S. A. Sanidas, A. Sesana, G. Shaifullah, R. M. Shannon, X. Siemens, J. Simon, R. Smits, R. Spiewak, I. H. Stairs, B. W. Stappers, D. R. Stinebring, K. Stovall, J. K. Swiggum, S. R. Taylor, G. Theureau, C. Tiburzi, L. Toomey, M. Vallisneri, W. van Straten, A. Vecchio, Y. Wang, L. Wen, X. P. You, W. W. Zhu, and X. J. Zhu. The International Pulsar Timing Array: First data release. Monthly Notices of the Royal Astronomical Society, 458(2):1267–1288, May 2016.

[22] Peter Dewdney, Peter Hall, R Schillizzi, and J Lazio. The square kilometre ar- ray. Proceedings of the Institute of Electrical and Electronics Engineers IEEE, 97(8):1482–1496, 2009.

[23] Russell T. Edwards, G. B. Hobbs, and R. N. Manchester. Tempo2, a new pulsar timing package. 2. The timing model and precision estimates. Mon. Not. Roy. Astron. Soc., 372:1549–1574, 2006.

[24] G. B. Hobbs, R. T. Edwards, and R. N. Manchester. tempo2, a new pulsar-timing package – i. an overview. Monthly Notices of the Royal Astronomical Society, 369(2):655–672, 2006.

[25] E. M. Standish. Time scales in the JPL and CfA ephemerides. A&A, 336:381–384, Aug 1998.

[26] A. W. Irwin and T. Fukushima. A numerical time ephemeris of the Earth. A&A, 348:642–652, Aug 1999.

[27] W. M. Folkner and R. S. Park. JPL planetary and Lunar ephemeris DE436. Jet Propulsion Laboratory, September 2016.

[28] L. Fairhead and P. Bretagnon. An analytical formula for the time transformation TB-TT. A&A, 229:240–247, Mar 1990.

[29] A. Lyne, F. Graham-Smith, and F. Graham-Smith. Pulsar Astronomy. Cambridge Astrophysics. Cambridge University Press, 2012.

[30] D. C. Backer and R. W. Hellings. Pulsar timing and general relativity. ARA&A, 24:537–575, Jan 1986.

[31] M. Maggiore. Gravitational Waves: Volume 1: Theory and Experiments. Gravita- tional Waves. OUP Oxford, 2008.

[32] The NANOGrav Collaboration, Z. Arzoumanian, A. Brazier, S. Burke-Spolaor, S. Chamberlin, S. Chatterjee, B. Christy, J. M. Cordes, N. Cornish, K. Crowter, P. B. Demorest, T. Dolch, J. A. Ellis, R. D. Ferdman, E. Fonseca, N. Garver-Daniels, M. E. Gonzalez, F. A. Jenet, G. Jones, M. L. Jones, V. M. Kaspi, M. Koop, M. T. Lam, T. J. W. Lazio, L. Levin, A. N. Lommen, D. R. Lorimer, J. Luo, R. S. Lynch, D. Madison, M. A. McLaughlin, S. T. McWilliams, D. J. Nice, N. Palliyaguru, T. T. Pennucci, S. M. Ransom, X. Siemens, I. H. Stairs, D. R. Stinebring, K. Stovall, J. K. Swiggum, M. Vallisneri, R. van Haasteren, Y. Wang, and W. Zhu. The NANOGrav Nine-year Data Set: Observations, Arrival Time Measurements, and Analysis of 37 Millisecond Pulsars. The Astrophysical Journal, 813:65, November 2015.

[33] T. Damour and N. Deruelle. General relativistic celestial mechanics of binary sys- tems. I. The post-Newtonian motion. Ann. Inst. Henri Poincar´e Phys. Th´eor, 43(1):107–132, Jan 1985.

[34] Ch. Lange, F. Camilo, N. Wex, M. Kramer, D. C. Backer, A. G. Lyne, and O. Doroshenko. Precision timing measurements of PSR J1012+5307. Monthly Notices of the Royal Astronomical Society, 326(1):274–282, Sep 2001.

[35] Zaven Arzoumanian et al. The NANOGrav 11-year Data Set: High-precision timing of 45 Millisecond Pulsars. Astrophys. J. Suppl., 235(2):37, 2018.

[36] R. Blandford, R. Narayan, and R. W. Romani. Arrival-time analysis for a millisec- ond pulsar. Journal of Astrophysics and Astronomy, 5:369–388, December 1984.

[37] Curt Cutler, Sarah Burke-Spolaor, Michele Vallisneri, Joseph Lazio, and Walid Majid. The Gravitational-Wave Discovery Space of Pulsar Timing Arrays. Phys. Rev., D89(4):042003, 2014.

[38] Z. Arzoumanian et al. The NANOGrav 11-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background. Astrophys. J., 859(1):47, 2018.

[39] W. M. Folkner, J. G. Williams, D. H. Boggs, R. S. Park, and P. Kuchynka. The Plan- etary and Lunar Ephemerides DE430 and DE431. Interplanetary Network Progress Report, 196:1–81, February 2014.

[40] J. B. Wang et al. Comparison of Pulsar Positions from Timing and Very Long Baseline Astrometry. Mon. Not. Roy. Astron. Soc., 469(1):425–434, 2017.

[41] Fabrizio Nesti and Paolo Salucci. The dark matter halo of the milky way, AD 2013. Journal of Cosmology and Astroparticle Physics, 2013(07):016–016, jul 2013.

[42] M. T. Lam, J. M. Cordes, S. Chatterjee, Z. Arzoumanian, K. Crowter, P. B. De- morest, T. Dolch, J. A. Ellis, R. D. Ferdman, E. Fonseca, M. E. Gonzalez, G. Jones, M. L. Jones, L. Levin, D. R. Madison, M. A. McLaughlin, D. J. Nice, T. T. Pen- nucci, S. M. Ransom, R. M. Shannon, X. Siemens, I. H. Stairs, K. Stovall, J. K. Swiggum, and W. W. Zhu. The NANOGrav Nine-year Data Set: Excess Noise in Millisecond Pulsar Arrival Times. The Astrophysical Journal, 834:35, January 2017.

[43] P. E. Boynton, E. J. Groth, D. P. Hutchinson, G. P. Nanos, Jr., R. B. Partridge, and D. T. Wilkinson. Optical Timing of the Crab Pulsar, NP 0532. The Astrophysical Journal, 175:217, July 1972.

[44] E. J. Groth. Timing of the Crab Pulsar III. The Slowing Down and the Nature of the Random Process. The Astrophysical Journal Supplement Series, 29, November 1975.

[45] Ryan M. Shannon and James M. Cordes. Assessing the role of spin noise in the precision timing of millisecond pulsars. The Astrophysical Journal, 725(2):1607, 2010.

[46] Andrew Lyne, George Hobbs, Michael Kramer, Ingrid Stairs, and Ben Stappers. Switched magnetospheric regulation of pulsar spin-down. Science, 329(5990):408– 412, 2010.

[47] R. M. Shannon, J. M. Cordes, T. S. Metcalfe, T. J. W. Lazio, I. Cognard, G. Desvi- gnes, G. H. Janssen, A. Jessner, M. Kramer, K. Lazaridis, M. B. Purver, B. W. Stappers, and G. Theureau. An Asteroid Belt Interpretation for the Timing Varia- tions of the Millisecond Pulsar B1937+21. The Astrophysical Journal, 766:5, March 2013.

[48] M. T. Lam, J. M. Cordes, S. Chatterjee, Z. Arzoumanian, K. Crowter, P. B. Demor- est, T. Dolch, J. A. Ellis, R. D. Ferdman, E. F. Fonseca, M. E. Gonzalez, G. Jones, M. L. Jones, L. Levin, D. R. Madison, M. A. McLaughlin, D. J. Nice, T. T. Pen- nucci, S. M. Ransom, X. Siemens, I. H. Stairs, K. Stovall, J. K. Swiggum, and W. W. Zhu. The NANOGrav Nine-year Data Set: Noise Budget for Pulsar Arrival Times on Intraday Timescales. The Astrophysical Journal, 819:155, March 2016.

[49] F. A. Jenet, G. B. Hobbs, W. van Straten, R. N. Manchester, M. Bailes, J. P. W. Verbiest, R. T. Edwards, A. W. Hotan, J. M. Sarkissian, and S. M. Ord. Upper bounds on the low-frequency stochastic gravitational wave background from pul- sar timing observations: Current limits and future prospects. The Astrophysical Journal, 653(2):1571, 2006.

[50] G. Hobbs, F. Jenet, K. J. Lee, J. P. W. Verbiest, D. Yardley, R. Manchester, A. Lommen, W. Coles, R. Edwards, and C. Shettigara. TEMPO2, a new pulsar timing package. III: Gravitational wave simulation. Mon. Not. Roy. Astron. Soc., 394:1945, 2009.

[51] Lindley Lentati, P. Alexander, M. P. Hobson, S. Taylor, J. Gair, S. T. Balan, and R. van Haasteren. Hyper-efficient model-independent Bayesian method for the analysis of pulsar timing data. Phys. Rev., D87(10):104021, 2013.

[52] Z. Arzoumanian, A. Brazier, S. Burke-Spolaor, S. J. Chamberlin, S. Chatterjee, J. M. Cordes, P. B. Demorest, X. Deng, T. Dolch, J. A. Ellis, R. D. Ferdman, N. Garver-Daniels, F. Jenet, G. Jones, V. M. Kaspi, M. Koop, M. T. Lam, T. J. W. Lazio, A. N. Lommen, D. R. Lorimer, J. Luo, R. S. Lynch, D. R. Madison, M. A. McLaughlin, S. T. McWilliams, D. J. Nice, N. Palliyaguru, T. T. Pennucci, S. M. Ransom, A. Sesana, X. Siemens, I. H. Stairs, D. R. Stinebring, K. Stovall, J. Swig- gum, M. Vallisneri, R. van Haasteren, Y. Wang, , W. W. Zhu, and NANOGrav Collaboration. Gravitational waves from individual supermassive black hole bina- ries in circular orbits: Limits from the north american nanohertz observatory for gravitational waves. The Astrophysical Journal, 794(2):141, 2014.

[53] Ellis J. Searching for Gravitational Waves Using Pulsar Timing Arrays. PhD thesis, The Univ. Wisconsin-Milwaukee, 2014.

[54] S. R. Taylor, L. Lentati, S. Babak, P. Brem, J. R. Gair, A. Sesana, and A. Vecchio. All correlations must die: Assessing the significance of a stochastic gravitational- wave background in pulsar-timing arrays. Phys. Rev., D95(4):042002, 2017.

[55] R. W. Hellings and G. S. Downs. Upper limits on the isotropic gravitational radi- ation background from pulsar timing analysis. The Astrophysical Journal, Letters, 265:L39–L42, February 1983.

[56] D. J. Champion, G. B. Hobbs, R. N. Manchester, R. T. Edwards, D. C. Backer, M. Bailes, N. D. R. Bhat, S. Burke-Spolaor, W. Coles, P. B. Demorest, R. D. Ferdman, W. M. Folkner, A. W. Hotan, M. Kramer, A. N. Lommen, D. J. Nice, M. B. Purver, J. M. Sarkissian, I. H. Stairs, W. van Straten, J. P. W. Verbiest, and D. R. B. Yardley. Measuring the mass of solar system planets using pulsar timing. The Astrophysical Journal Letters, 720(2):L201, 2010.

[57] D. Brouwer and G.M. Clemence. Methods of celestial mechanics. Academic Press, 1961.

[58] T. Joseph W. Lazio, S. Bhaskaran, C. Cutler, W. M. Folkner, R. S. Park, J. A. Ellis, T. Ely, S. R. Taylor, and M. Vallisneri. Solar System Ephemerides, Pulsar Timing, Gravitational Waves, & Navigation. IAU Symp., 337:150–153, 2017.

[59] Brian Luzum, Nicole Capitaine, Agn`es Fienga, William Folkner, Toshio Fukushima, James Hilton, Catherine Hohenkerk, George Krasinsky, G´erard Petit, Elena Pitjeva, Michael Soffel, and Patrick Wallace. The iau 2009 system of astronomical constants: the report of the iau working group on numerical standards for fundamental astron- omy. Celestial Mechanics and Dynamical Astronomy, 110(4):293, Jul 2011.

[60] Phil Gregory. Bayesian Logical Data Analysis for the Physical Sciences: A Com-parative Approach with Mathematica⃝R Support. Cambridge University Press, 2005.

[61] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin. Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis, 2013.

[62] R. A. Jacobson. The orbits of the uranian satellites and rings, the gravity field of the uranian system, and the orientation of the pole of uranus. The Astronomical Journal, 148(5):76, 2014.

[63] Z. Arzoumanian, A. Brazier, S. Burke-Spolaor, S. J. Chamberlin, S. Chatterjee, B. Christy, J. M. Cordes, N. J. Cornish, K. Crowter, P. B. Demorest, X. Deng, T. Dolch, J. A. Ellis, R. D. Ferdman, E. Fonseca, N. Garver-Daniels, M. E. Gonza- lez, F. Jenet, G. Jones, M. L. Jones, V. M. Kaspi, M. Koop, M. T. Lam, T. J. W. Lazio, L. Levin, A. N. Lommen, D. R. Lorimer, J. Luo, R. S. Lynch, D. R. Madi- son, M. A. McLaughlin, S. T. McWilliams, C. M. F. Mingarelli, D. J. Nice, N. Pal- liyaguru, T. T. Pennucci, S. M. Ransom, L. Sampson, S. A. Sanidas, A. Sesana, X. Siemens, J. Simon, I. H. Stairs, D. R. Stinebring, K. Stovall, J. Swiggum, S. R. Taylor, M. Vallisneri, R. van Haasteren, Y. Wang, W. W. Zhu, and The NANOGrav Collaboration. The nanograv nine-year data set: Limits on the isotropic stochastic gravitational wave background. The Astrophysical Journal, 821(1):13, 2016.

[64] Justin Ellis and Rutger van Haasteren. jellis18/ptmcmcsampler: Official release, October 2017.

[65] Justin Ellis and Rutger van Haasteren. jellis18/pal2: Pal2, January 2017.

[66] Heikki Haario, Eero Saksman, and Johanna Tamminen. An adaptive metropolis algorithm. Bernoulli, 7(2):223–242, 2001.

[67] Heikki Haario, Eero Saksman, and Johanna Tamminen. Componentwise adaptation for high dimensional mcmc. Computational Statistics, 20(2):265–273, 2005.

[68] Cajo JF Ter Braak. A markov chain monte carlo version of the genetic algorithm differential evolution: easy bayesian computing for real parameter spaces. Statistics and Computing, 16(3):239–249, 2006.

[69] S. Vaughan, P. Uttley, A. G. Markowitz, D. Huppenkothen, M. J. Middleton, W. N. Alston, J. D. Scargle, and W. M. Farr. False periodicities in quasar time-domain surveys. Mon. Not. Roy. Astron. Soc., 461(3):3145–3152, 2016.

[70] J. Kruschke. Doing Bayesian Data Analysis: A Tutorial Introduction with R. Else- vier Science, 2010.

[71] H. Jeffreys. The Theory of Probability. Clarenson Press, 2nd edition, 1948.

[72] Robert E. Kass and Adrian E. Raftery. Bayes factors. Journal of the American Statistical Association, 90(430):773–795, 1995.

[73] Adrian E. Raftery. Bayesian model selection in social research. Sociological Method- ology, 25:111–163, 1995.

[74] A. O’Hagan and M. Kendall. Kendall’s advanced theory of statistics: Vol. IIB. Edward Arnold, 1994.

[75] James M. Dickey. The weighted likelihood ratio, linear hypotheses on normal loca- tion parameters. The Annals of Mathematical Statistics, 42(1):204–223, 1971.

[76] Isabella Verdinelli and Larry Wasserman. Computing bayes factors using a gen- eralization of the savage-dickey density ratio. Journal of the American Statistical Association, 90(430):614–618, 1995.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る