リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Local stress control to suppress dislocation generation for pseudomorphically grown AlGaN UV-C laser diodes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Local stress control to suppress dislocation generation for pseudomorphically grown AlGaN UV-C laser diodes

Kushimoto, Maki Zhang, Ziyi Yoshikawa, Akira Aoto, Koji Honda, Yoshio Sasaoka, Chiaki Schowalter, Leo J. Amano, Hiroshi 名古屋大学

2022

概要

Previously reported UV-C laser diodes (LD) structures have been subject to design constraints owing to dark line defects at the edge of the mesa stripe after device fabrication. To address this issue, a detailed analysis revealed that the dark line defects were dislocations generated by local residual shear stresses associated with mesa formation on highly strained epitaxial layers. A technique for controlling the local concentration of shear stress, using a sloped mesa geometry, was proposed based on the insights gained by modeling the stress distribution at the edge of the mesa stripe. Experimental results showed that this technique succeeded in completely suppressing the emergence of dark-line defects. This technique will be useful in improving the performance of pseudomorphic AlGaN/AlN-based optoelectronic device including UV-C LDs.

参考文献

1. Z. Zhang, M. Kushimoto, T. Sakai, N. Sugiyama, L. J. Schowalter, C. Sasaoka, and H. Amano, “A 271.8 nm deep-ultraviolet laser diode for room temperature operation,” Applied Physics Express 12, 124003 (2019).

2. Z. Zhang, M. Kushimoto, A. Yoshikawa, K. Aoto, L. J. Schowalter, C. Sasaoka, and H. Amano, “Continuous-wave lasing of AlGaN-based ultraviolet laser diode at 274.8 nm by current injection,” Applied Physics Express 15, 041007 (2022).

3. M. Kushimoto, Z. Zhang, N. Sugiyama, Y. Honda, L. J. Schowalter, C. Sasaoka, and H. Amano, “Impact of heat treatment process on thresh- old current density in AlGaN-based deep-ultraviolet laser diodes on AlN substrate,” Applied Physics Express 14, 051003 (2021).

4. J. Grandusky, J. Smart, M. Mendrick, L. Schowalter, K. Chen, and E. Schu-bert, “Pseudomorphic growth of thick n-type AlxGa1-xN layers on low- defect-density bulk AlN substrates for UV LED applications,” Journal of Crystal Growth 311, 2864–2866 (2009).

5. J. R. Grandusky, S. R. Gibb, M. C. Mendrick, and L. J. Schowalter, “Prop-erties of Mid-Ultraviolet Light Emitting Diodes Fabricated from Pseudo- morphic Layers on Bulk Aluminum Nitride Substrates,” Applied Physics Express 3, 072103 (2010).

6. Z. Zhang, M. Kushimoto, T. Sakai, N. Sugiyama, L. J. Schowalter, C. Sasaoka, and H. Amano, “Design and characterization of a low-optical- loss UV-C laser diode,” Japanese Journal of Applied Physics 59, 094001 (2020).

7. J. Mei, R. Liu, F. A. Ponce, H. Omiya, and T. Mukai, “Basal-plane slip in InGaN/GaN heterostructures in the presence of threading dislocations,” Applied Physics Letters 90, 171922 (2007).

8. P. G. Neudeck, H. Du, M. Skowronski, D. J. Spry, and A. J. Trunek, “Growth and characterization of 3C–SiC and 2H–AlN/GaN films and de- vices produced on step-free 4H–SiC mesa substrates,” Journal of Physics D: Applied Physics 40, 6139–6149 (2007).

9. R. Liu, J. Mei, S. Srinivasan, F. A. Ponce, H. Omiya, Y. Narukawa, and T. Mukai, “Generation of misfit dislocations by basal-plane slip in In- GaN/GaN heterostructures,” Applied Physics Letters 89, 201911 (2006).

10. J.-L. Gosselin and P. Valizadeh, “Theoretical Evaluation of the Effects of Isolation-Feature Size and Geometry on the Built-In Strain and 2-D Elec- tron Gas Density of AlGaN/GaN Heterostructures,” IEEE Transactions on Electron Devices 65, 4800–4806 (2018).

11. Y. Kawakami, A. Kaneta, L. Su, Y. Zhu, K. Okamoto, M. Funato, A. Kikuchi, and K. Kishino, “Optical properties of InGaN/GaN nanopillars fabricated by postgrowth chemically assisted ion beam etching,” Journal of Applied Physics 107, 023522 (2010).

12. K. A. Jones and I. G. Batyrev, “The structure of dislocations in (In,Al,Ga)N wurtzite films grown epitaxially on (0001) or (112¯2) GaN or AlN sub- strates,” Journal of Applied Physics 112, 113507 (2012).

13. V. Audurier, J. L. Demenet, and J. Rabier, “AIN plastic deformation be-tween room temperature and 800°C. I. Dislocation substructure observa- tions,” Philosophical Magazine A 77, 825–842 (1998).

14. M. E. Twigg, N. D. Bassim, M. A. Mastro, C. R. Eddy, R. L. Henry, J. C. Culbertson, R. T. Holm, P. Neudeck, J. A. Powell, and A. J. Trunek, “Strain relief and dislocation motion in III-nitride films grown on stepped and step- free 4H-SiC mesas,” Journal of Applied Physics 101, 053509 (2007).

15. N. Bassim, M. Twigg, M. Mastro, C. Eddy, T. Zega, R. Henry, J. Cul-bertson, R. Holm, P. Neudeck, J. Powell, and A. Trunek, “Dislocations in III-nitride films grown on 4H-SiC mesas with and without surface steps,” Journal of Crystal Growth 304, 103–107 (2007).

16. Y. Takada, J. Osaka, Y. Ishikawa, and K. Wada, “Effect of Mesa Shape on Threading Dislocation Density in Ge Epitaxial Layers on Si after Post- Growth Annealing,” Japanese Journal of Applied Physics 49, 04DG23 (2010).

17. M. Yamaguchi, T. Yagi, T. Sota, T. Deguchi, K. Shimada, and S. Nakamura, “Brillouin scattering study of bulk GaN,” Journal of Applied Physics 85, 8502–8504 (1999).

18. M. Kazan, E. Moussaed, R. Nader, and P. Masri, “Elastic constants of aluminum nitride,” physica status solidi (c) 4, 204–207 (2007).

19. I. Yonenaga, “High-temperature strength of III V nitride crystals,” Journal of Physics: Condensed Matter 14, 12947–12951 (2002).

20. I. Belabbas, J. Chen, and G. Nouet, “Energetics and core structure of the undissociated basal screw dislocation in wurtzite GaN,” physica status so- lidi c 13, 221–224 (2016).

21. Y. Tokumoto, K. Kutsukake, Y. Ohno, and I. Yonenaga, “Dislocation structure in AlN films induced by in situ transmission electron microscope nanoindentation,” Journal of Applied Physics 112, 093526 (2012).

22. M. Fujikane, T. Yokogawa, S. Nagao, and R. Nowak, “Yield shear stress dependence on nanoindentation strain rate in bulk GaN crystal,” physica status solidi c 8, 429–431 (2011).

23. P. G. Caldas, E. M. Silva, R. Prioli, J. Y. Huang, R. Juday, A. M. Fischer, and F. A. Ponce, “Plasticity and optical properties of GaN under highly localized nanoindentation stress fields,” Journal of Applied Physics 121, 125105 (2017).

24. F. Yan, C. Qin, J. H. Zhao, and M. Weiner, “A Novel Technology for the Formation of a Very Small Bevel Angle for Edge Termination,” Materials Science Forum 389–393, 1305–1308 (2002).

25. T. Maeda, T. Narita, H. Ueda, M. Kanechika, T. Uesugi, T. Kachi, T. Ki-moto, M. Horita, and J. Suda, “Design and Fabrication of GaN p-n Junction Diodes With Negative Beveled-Mesa Termination,” IEEE Electron Device Letters 40, 941–944 (2019).

26. S. Tomiya, H. Nakajima, K. Funato, T. Miyajima, K. Kobayashi, T. Hino, S. Kijima, T. Asano, and M. Ikeda, “Dislocations in GaN-Based Laser Diodes on Epitaxial Lateral Overgrown GaN Layers,” physica status solidi (a) 188, 69–72 (2001).

参考文献をもっと見る