リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Enhanced chondrogenic differentiation of iPS cell-derived mesenchymal stem/stromal cells via neural crest cell induction for hyaline cartilage repair」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Enhanced chondrogenic differentiation of iPS cell-derived mesenchymal stem/stromal cells via neural crest cell induction for hyaline cartilage repair

Zujur, Denise Al-Akashi, Ziadoon Nakamura, Anna Zhao, Chengzhu Takahashi, Kazuma Aritomi, Shizuka Theoputra, William Kamiya, Daisuke Nakayama, Koichi Ikeya, Makoto 京都大学 DOI:10.3389/fcell.2023.1140717

2023.05.10

概要

Background: To date, there is no effective long-lasting treatment for cartilage tissue repair. Primary chondrocytes and mesenchymal stem/stromal cells are the most commonly used cell sources in regenerative medicine. However, both cell types have limitations, such as dedifferentiation, donor morbidity, and limited expansion. Here, we report a stepwise differentiation method to generate matrix-rich cartilage spheroids from induced pluripotent stem cell-derived mesenchymal stem/stromal cells (iMSCs) via the induction of neural crest cells under xeno-free conditions. Methods: The genes and signaling pathways regulating the chondrogenic susceptibility of iMSCs generated under different conditions were studied. Enhanced chondrogenic differentiation was achieved using a combination of growth factors and small-molecule inducers. Results: We demonstrated that the use of a thienoindazole derivative, TD-198946, synergistically improves chondrogenesis in iMSCs. The proposed strategy produced controlled-size spheroids and increased cartilage extracellular matrix production with no signs of dedifferentiation, fibrotic cartilage formation, or hypertrophy in vivo. Conclusion: These findings provide a novel cell source for stem cell-based cartilage repair. Furthermore, since chondrogenic spheroids have the potential to fuse within a few days, they can be used as building blocks for biofabrication of larger cartilage tissues using technologies such as the Kenzan Bioprinting method.

この論文で使われている画像

参考文献

micromechanical properties of nucleus pulposus constructs. Arthritis Res. Ther. 16 (2),

R67. doi:10.1186/ar4505

Baer, P. C., Griesche, N., Luttmann, W., Schubert, R., Luttmann, A., and Geiger, H.

(2010). Human adipose-derived mesenchymal stem cells in vitro: Evaluation of an

optimal expansion medium preserving stemness. Cytotherapy 12 (1), 96–106. doi:10.

3109/14653240903377045

Duan, D., and Derynck, R. (2019). Transforming growth factor-β (TGF-β)-induced

up-regulation of TGF-β receptors at the cell surface amplifies the TGF-β response.

J. Biol. Chem. 294 (21), 8490–8504. doi:10.1074/jbc.RA118.005763

Boreström, C., Simonsson, S., Enochson, L., Bigdeli, N., Brantsing, C., Ellerström, C.,

et al. (2014). Footprint-free human induced pluripotent stem cells from articular

cartilage with redifferentiation capacity: A first step toward a clinical-grade cell

source. Stem Cells Transl. Med. 3 (4), 433–447. doi:10.5966/sctm.2013-0138

Fischer, L., Boland, G., and Tuan, R. S. (2002). Wnt signaling during BMP-2 stimulation of

mesenchymal chondrogenesis. J. Cell Biochem. 84 (4), 816–831. doi:10.1002/jcb.10091

Fukuta, M., Nakai, Y., Kirino, K., Nakagawa, M., Sekiguchi, K., Nagata, S., et al.

(2014). Derivation of mesenchymal stromal cells from pluripotent stem cells through a

neural crest lineage using small molecule compounds with defined media. PLoS One 9

(12), e112291. doi:10.1371/journal.pone.0112291

Caron, M. M. J., Emans, P. J., Cremers, A., Surtel, D. A. M., Coolsen, M. M. E., van

Rhijn, L. W., et al. (2013). Hypertrophic differentiation during chondrogenic

differentiation of progenitor cells is stimulated by BMP-2 but suppressed by BMP-7.

Osteoarthr. Cartil. 21 (4), 604–613. doi:10.1016/j.joca.2013.01.009

Gharibi, B., and Hughes, F. J. (2012). Effects of medium supplements on proliferation,

differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells

Transl. Med. 1 (11), 771–782. doi:10.5966/sctm.2010-0031

Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., et al. (2013).

Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC

Bioinforma. 14, 128. doi:10.1186/1471-2105-14-128

Hamamoto, S., Chijimatsu, R., Shimomura, K., Kobayashi, M., Jacob, G., Yano, F.,

et al. (2020). Enhancement of chondrogenic differentiation supplemented by a novel

small compound for chondrocyte-based tissue engineering. J. Exp. Orthop. 7 (1), 10.

doi:10.1186/s40634-020-00228-8

Chijimatsu, R., Kobayashi, M., Ebina, K., Iwahashi, T., Okuno, Y., Hirao, M., et al.

(2018). Impact of dexamethasone concentration on cartilage tissue formation from

human synovial derived stem cells in vitro. Cytotechnology 70 (2), 819–829. doi:10.1007/

s10616-018-0191-y

Huang, R., Grishagin, I., Wang, Y., Zhao, T., Greene, J., Obenauer, J. C., et al. (2019).

The NCATS BioPlanet – an integrated platform for exploring the universe of cellular

signaling pathways for toxicology, systems biology, and chemical genomics. Front.

Pharmacol. 10, 445. doi:10.3389/fphar.2019.00445

Chijimatsu, R., Yano, F., Saito, T., Kobayashi, M., Hamamoto, S., Kaito, T., et al.

(2019). Effect of the small compound TD-198946 on glycosaminoglycan synthesis

and transforming growth factor β3-associated chondrogenesis of human synoviumderived stem cells in vitro. J. Tissue Eng. Regen. Med. 13 (3), 446–458. doi:10.1002/

term.2795

Hudson, J. E., Mills, R. J., Frith, J. E., Brooke, G., Jaramillo-Ferrada, P., Wolvetang, E.

J., et al. (2011). A defined medium and substrate for expansion of human mesenchymal

stromal cell progenitors that enriches for osteo- and chondrogenic precursors. Stem

Cells Dev. 20 (1), 77–87. doi:10.1089/scd.2009.0497

Clarke, L. E., McConnell, J. C., Sherratt, M. J., Derby, B., Richardson, S. M., and

Hoyland, J. A. (2014). Growth differentiation factor 6 and transforming growth factorbeta differentially mediate mesenchymal stem cell differentiation, composition, and

Frontiers in Cell and Developmental Biology

12

frontiersin.org

Zujur et al.

10.3389/fcell.2023.1140717

Kamiya, D., Takenaka-Ninagawa, N., Motoike, S., Kajiya, M., Akaboshi, T., Zhao, C.,

et al. (2022). Induction of functional xeno-free MSCs from human iPSCs via a neural

crest cell lineage. npj Regen. Med. 7, 47. doi:10.1038/s41536-022-00241-8

Saito, T., Yano, F., Mori, D., Ohba, S., Hojo, H., Otsu, M., et al. (2013). Generation of

col2a1-EGFP iPS cells for monitoring chondrogenic differentiation. PLOS ONE 8 (9),

e74137. doi:10.1371/journal.pone.0074137

Knudson, W., and Loeser, R. F. (2002). CD44 and integrin matrix receptors

participate in cartilage homeostasis. Cell Mol. Life Sci. 59 (1), 36–44. doi:10.1007/

s00018-002-8403-0

Schminke, B., Frese, J., Bode, C., Goldring, M. B., and Miosge, N. (2016). Laminins

and nidogens in the pericellular matrix of chondrocytes: Their role in osteoarthritis and

chondrogenic differentiation. Am. J. Pathology 186 (2), 410–418. doi:10.1016/j.ajpath.

2015.10.014

Kobayashi, M., Chijimatsu, R., Hart, D., Hamamoto, S., Jacob, G., Yano, F., et al.

(2020). Evidence that TD-198946 enhances the chondrogenic potential of human

synovium-derived stem cells through the NOTCH3 signaling pathway. J. Tissue Eng.

Regen. Med. 15, 103–115. doi:10.1002/term.3149

Shakibaei, M., Zimmermann, B., and Merker, H. J. (1995). Changes in integrin

expression during chondrogenesis in vitro: An immunomorphological study.

J. Histochem. Cytochem. 43 (10), 1061–1069. doi:10.1177/43.10.7560884

Koyama, N., Miura, M., Nakao, K., Kondo, E., Fujii, T., Taura, D., et al. (2013).

Human induced pluripotent stem cells differentiated into chondrogenic lineage via

generation of mesenchymal progenitor cells. Stem Cells Dev. 22 (1), 102–113. doi:10.

1089/scd.2012.0127

Somoza, R. A., Correa, D., Labat, I., Sternberg, H., Forrest, M. E., Khalil, A. M., et al. (2018).

Transcriptome-wide analyses of human neonatal articular cartilage and human

mesenchymal stem cell-derived cartilage provide a new molecular target for evaluating

engineered cartilage. Tissue Eng. Part A 24 (3-4), 335–350. doi:10.1089/ten.TEA.2016.0559

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z.,

et al. (2016). Enrichr: A comprehensive gene set enrichment analysis web server

2016 update. Nucleic Acids Res. 44 (1), W90–W97. doi:10.1093/nar/gkw377

Song, J. J., Aswad, R., Kanaan, R. A., Rico, M. C., Owen, T. A., Barbe, M. F., et al.

(2007). Connective tissue growth factor (CTGF) acts as a downstream mediator of TGFbeta1 to induce mesenchymal cell condensation. J. Cell Physiol. 210 (2), 398–410. doi:10.

1002/jcp.20850

Kushioka, J., Kaito, T., Chijimatsu, R., Okada, R., Ishiguro, H., Bal, Z., et al. (2020).

The small compound, TD-198946, protects against intervertebral degeneration by

enhancing glycosaminoglycan synthesis in nucleus pulposus cells. Sci. Rep. 10,

14190. doi:10.1038/s41598-020-71193-6

Sophia Fox, A. J., Bedi, A., and Rodeo, S. A. (2009). The basic science of articular

cartilage: Structure, composition, and function. Sports Health 1 (6), 461–468. doi:10.

1177/1941738109350438

Lee, G., Chambers, S. M., Tomishima, M. J., and Studer, L. (2010). Derivation of

neural crest cells from human pluripotent stem cells. Nat. Protoc. 5 (4), 688–701. doi:10.

1038/nprot.2010.35

Sun, Y., Wang, T. L., Toh, W. S., and Pei, M. (2017). The role of laminins in

cartilaginous tissues: From development to regeneration. Eur. Cell Mater 34, 40–54.

doi:10.22203/eCM.v034a03

Li, T. F., O’Keefe, R. J., and Chen, D. (2005). TGF-beta signaling in chondrocytes.

Front. Biosci. 10, 681–688. doi:10.2741/1563

Thomas, P. D., Ebert, D., Muruganujan, A., Mushayahama, T., Albou, L.-P., and Mi,

H. (2022). Panther: Making genome-scale phylogenetics accessible to all. Protein Sci. 31

(1), 8–22. doi:10.1002/pro.4218

Liu, S., de Castro, L. F., Jin, P., Civini, S., Ren, J., Reems, J. A., et al. (2017).

Manufacturing differences affect human bone marrow stromal cell characteristics

and function: Comparison of production methods and products from multiple

centers. Sci. Rep. 7, 46731. doi:10.1038/srep46731

Tuli, R., Tuli, S., Nandi, S., Huang, X., Manner, P. A., Hozack, W. J., et al. (2003).

Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal

progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt

signaling cross-talk. J. Biol. Chem. 278 (42), 41227–41236. doi:10.1074/jbc.M305312200

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change

and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (12), 550. doi:10.1186/

s13059-014-0550-8

Ulrich-Vinther, M., Maloney, M. D., Schwarz, E. M., Rosier, R., and O’Keefe, R. J.

(2003). Articular cartilage biology. J. Am. Acad. Orthop. Surg. 11 (6), 421–430. doi:10.

5435/00124635-200311000-00006

Ma, N., Teng, X., Zheng, Q., and Chen, P. (2019). The regulatory mechanism of p38/

MAPK in the chondrogenic differentiation from bone marrow mesenchymal stem cells.

J. Orthop. Surg. Res. 14 (1), 434. doi:10.1186/s13018-019-1505-2

Umeda, K., Oda, H., Yan, Q., Matthias, N., Zhao, J., Davis, B. R., et al. (2015). Longterm expandable SOX9+ chondrogenic ectomesenchymal cells from human pluripotent

stem cells. Stem Cell Rep. 4, 712–726. (Electronic)). doi:10.1016/j.stemcr.2015.02.012

Mardones, R., Jofré, C. M., and Minguell, J. J. (2015). Cell therapy and tissue

engineering approaches for cartilage repair and/or regeneration. Int. J. Stem Cells 8

(1), 48–53. doi:10.15283/ijsc.2015.8.1.48

Umeda, K., Zhao, J., Simmons, P., Stanley, E., Elefanty, A., and Nakayama, N. (2012).

Human chondrogenic paraxial mesoderm, directed specification and prospective

isolation from pluripotent stem cells. Sci. Rep. 2, 455. doi:10.1038/srep00455

Menendez, L., Yatskievych, T. A., Antin, P. B., and Dalton, S. (2011). Wnt signaling

and a Smad pathway blockade direct the differentiation of human pluripotent stem cells

to multipotent neural crest cells. Proc. Natl. Acad. Sci. U. S. A. 108 (48), 19240–19245.

doi:10.1073/pnas.1113746108

Wang, W., Rigueur, D., and Lyons, K. M. (2014). TGFβ signaling in cartilage

development and maintenance. Birth Defects Res. C Embryo Today 102 (1), 37–51.

doi:10.1002/bdrc.21058

Miljkovic, N. D., Cooper, G. M., and Marra, K. G. (2008). Chondrogenesis, bone

morphogenetic protein-4 and mesenchymal stem cells. Osteoarthr. Cartil. 16 (10),

1121–1130. doi:10.1016/j.joca.2008.03.003

Xiao, Y., Peperzak, V., van Rijn, L., Borst, J., and de Bruijn, J. D. (2010).

Dexamethasone treatment during the expansion phase maintains stemness of bone

marrow mesenchymal stem cells. J. Tissue Eng. Regen. Med. 4 (5), 374–386. doi:10.1002/

term.250

Miyazaki, T., Futaki, S., Suemori, H., Taniguchi, Y., Yamada, M., Kawasaki, M., et al.

(2012). Laminin E8 fragments support efficient adhesion and expansion of dissociated

human pluripotent stem cells. Nat. Commun. 3, 1236. doi:10.1038/ncomms2231

Xie, Z., Bailey, A., Kuleshov, M. V., Clarke, D. J. B., Evangelista, J. E., Jenkins, S. L.,

et al. (2021). Gene set knowledge discovery with enrichr. Curr. Protoc. 1 (3), e90. doi:10.

1002/cpz1.90

Munger, J. S., and Sheppard, D. (2011). Cross talk among TGF-β signaling pathways,

integrins, and the extracellular matrix. Cold Spring Harb. Perspect. Biol. 3 (11), a005017.

doi:10.1101/cshperspect.a005017

Yang, X., Chen, L., Xu, X., Li, C., Huang, C., and Deng, C. X. (2001). TGF-beta/

Smad3 signals repress chondrocyte hypertrophic differentiation and are required for

maintaining articular cartilage. J. Cell Biol. 153 (1), 35–46. doi:10.1083/jcb.153.1.35

Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K., et al.

(2014). A novel efficient feeder-free culture system for the derivation of human induced

pluripotent stem cells. Sci. Rep. 4, 3594. doi:10.1038/srep03594

Yano, F., Hojo, H., Ohba, S., Fukai, A., Hosaka, Y., Ikeda, T., et al. (2013a). A novel

disease-modifying osteoarthritis drug candidate targeting Runx1. Ann. Rheum. Dis. 72

(5), 748–753. doi:10.1136/annrheumdis-2012-201745

Nakajima, T., and Ikeya, M. (2019). Insights into the biology of fibrodysplasia

ossificans progressiva using patient-derived induced pluripotent stem cells. Regen.

Ther. 11, 25–30. doi:10.1016/j.reth.2019.04.004

Yano, F., Hojo, H., Ohba, S., Saito, T., Honnami, M., Mochizuki, M., et al. (2013b).

Cell-sheet technology combined with a thienoindazole derivative small compound TD198946 for cartilage regeneration. Biomaterials 34 (22), 5581–5587. doi:10.1016/j.

biomaterials.2013.04.008

Nakamura, A., Murata, D., Fujimoto, R., Tamaki, S., Nagata, S., Ikeya, M., et al.

(2021). Bio-3D printing iPSC-derived human chondrocytes for articular cartilage

regeneration. Biofabrication 13, 044103. doi:10.1088/1758-5090/ac1c99

Yoshimatsu, M., Ohnishi, H., Zhao, C., Hayashi, Y., Kuwata, F., Kaba, S., et al. (2021).

In vivo regeneration of rat laryngeal cartilage with mesenchymal stem cells derived from

human induced pluripotent stem cells via neural crest cells. Stem Cell Res. 52, 102233.

doi:10.1016/j.scr.2021.102233

Nakayama, K. (2013). “Chapter 1 - in vitro biofabrication of tissues and organs,” in

Biofabrication. Editors G. Forgacs and W. Sun (Boston: William Andrew Publishing), 1–21.

Nakayama, N., Duryea, D., Manoukian, R., Chow, G., and Han, C.-y. E. (2003).

Macroscopic cartilage formation with embryonic stem-cell-derived mesodermal

progenitor cells. J. Cell Sci. 116 (10), 2015–2028. doi:10.1242/jcs.00417

Zhao, C., and Ikeya, M. (2018). Generation and applications of induced pluripotent

stem cell-derived mesenchymal stem cells. Stem Cells Int. 2018, 9601623. doi:10.1155/

2018/9601623

Noronha, N. C., Mizukami, A., Caliári-Oliveira, C., Cominal, J. G., Rocha, J. L. M.,

Covas, D. T., et al. (2019). Priming approaches to improve the efficacy of mesenchymal

stromal cell-based therapies. Stem Cell Res. Ther. 10 (1), 131. doi:10.1186/s13287-0191224-y

Zhou, S., Chen, S., Jiang, Q., and Pei, M. (2019). Determinants of stem cell lineage

differentiation toward chondrogenesis versus adipogenesis. Cell Mol. Life Sci. 76 (9),

1653–1680. doi:10.1007/s00018-019-03017-4

Zujur, D., Kanke, K., Lichtler, A. C., Hojo, H., Chung, U.-i., and Ohba, S. (2017).

Three-dimensional system enabling the maintenance and directed differentiation of

pluripotent stem cells under defined conditions. Sci. Adv. 3 (5), e1602875. doi:10.1126/

sciadv.1602875

Rodríguez Ruiz, A., Dicks, A., Tuerlings, M., Schepers, K., van Pel, M., Nelissen, R. G.

H. H., et al. (2021). Cartilage from human-induced pluripotent stem cells: Comparison

with neo-cartilage from chondrocytes and bone marrow mesenchymal stromal cells.

Cell Tissue Res. 386, 309–320. doi:10.1007/s00441-021-03498-5

Frontiers in Cell and Developmental Biology

13

frontiersin.org

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る