リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quasi-two-dimensional Fermi surface of superconducting line-nodal metal CaSb₂」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quasi-two-dimensional Fermi surface of superconducting line-nodal metal CaSb₂

Ikeda, Atsutoshi Saha, Shanta Ranjan Graf, David Saraf, Prathum Sokratov, Danila Sergeevich Hu, Yajian Takahashi, Hidemitsu Yamane, Soichiro Jayaraj, Anooja Sławińska, Jagoda Nardelli, Marco Buongiorno Yonezawa, Shingo Maeno, Yoshiteru Paglione, Johnpierre 京都大学 DOI:10.1103/PhysRevB.106.075151

2022.08.15

概要

We report on the Fermi surfaces and superconducting parameters of CaSb₂ single crystals (superconducting below Tc ~ 1.8 K) grown by the self-flux method. The frequency of de Haas–van Alphen and Shubnikov–de Haas oscillations evidences a quasi-two-dimensional (quasi-2D) Fermi surface, consistent with one of the Fermi surfaces forming Dirac lines predicted by first-principles calculations. Measurements in the superconducting state reveal that CaSb₂ is close to a type-I superconductor with the Ginzburg-Landau parameter of around unity. The temperature dependence of the upper critical field Hc₂ is well described by a model considering two superconducting bands, and the enhancement of the effective mass estimated from Hc₂(0K) is consistent with the quasi-2D band observed by the quantum oscillations. Our results indicate that a quasi-2D band forming Dirac lines contributes to the superconductivity in CaSb₂.

この論文で使われている画像

参考文献

[1] Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo,Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Superconductivity in CuxBi2Se3 and its Implications for Pairing in the Undoped Topological Insulator, Phys. Rev. Lett. 104, 057001 (2010).

[2] L. Fu and E. Berg, Odd-Parity Topological Superconductors: Theory and Application to CuxBi2Se3, Phys. Rev. Lett. 105, 097001 (2010).

[3] S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, and Y. Ando, Topological Superconductivity in CuxBi2Se3, Phys. Rev. Lett. 107, 217001 (2011).

[4] K. Matano, M. Kriener, K. Segawa, Y. Ando, and G.-q. Zheng, Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3, Nat. Phys. 12, 852 (2016).

[5] S. Yonezawa, K. Tajiri, S. Nakata, Y. Nagai, Z. Wang, K. Segawa, Y. Ando, and Y. Maeno, Thermodynamic evidence for nematic superconductivity in CuxBi2Se3, Nat. Phys. 13, 123 (2017).

[6] S. Kobayashi and M. Sato, Topological Superconductivity in Dirac Semimetals, Phys. Rev. Lett. 115, 187001 (2015).

[7] L. Aggarwal, A. Gaurav, G. S. Thakur, Z. Haque, A. K. Ganguli, and G. Sheet, Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2, Nat. Mater. 15, 32 (2016).

[8] L. He, Y. Jia, S. Zhang, X. Hong, C. Jin, and S. Li, Pressure- induced superconductivity in the three-dimensional topological Dirac semimetal Cd3As2, npj Quantum Mater. 1, 16014 (2016).

[9] M. Oudah, A. Ikeda, J. N. Hausmann, S. Yonezawa, T. Fukumoto, S. Kobayashi, M. Sato, and Y. Maeno, Superconduc- tivity in the antiperovskite Dirac-metal oxide Sr3−xSnO, Nat.Commun. 7, 13617 (2016).

[10] G. Xu, B. Lian, P. Tang, X.-L. Qi, and S.-C. Zhang, Topological Superconductivity on the Surface of Fe-Based Superconduc- tors, Phys. Rev. Lett. 117, 047001 (2016).

[11] P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K. Okazaki,Z. Wang, J. Wen, G. D. Gu, H. Ding, and S. Shin, Observation of topological superconductivity on the surface of an iron-based superconductor, Science 360, 182 (2018).

[12] C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Topological nodal line semimetals with and without spin-orbital coupling, Phys. Rev. B 92, 081201(R) (2015).

[13] C. Fang, H. Weng, X. Dai, and Z. Fang, Topological nodal line semimetals, Chin. Phys. B 25, 117106 (2016).

[14] H. Shapourian, Y. Wang, and S. Ryu, Topological crystalline superconductivity and second-order topological superconduc- tivity in nodal-loop materials, Phys. Rev. B 97, 094508 (2018).

[15] R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological Node- Line Semimetal and Dirac Semimetal State in Antiperovskite Cu3PdN, Phys. Rev. Lett. 115, 036807 (2015).

[16] A. Yamakage, Y. Yamakawa, Y. Tanaka, and Y. Okamoto, Line-node dirac semimetal and topological insulating phase in noncentrosymmetric pnictides CaAgX (X P, As), J. Phys. Soc. Jpn. 85, 013708 (2016).

[17] S. Kobayashi, Y. Yamakawa, A. Yamakage, T. Inohara, Y. Okamoto, and Y. Tanaka, Crossing-line-node semimetals: Gen- eral theory and application to rare-earth trihydrides, Phys. Rev. B 95, 245208 (2017).

[18] S. Kobayashi, Y. Yanase, and M. Sato, Topologically stable gapless phases in nonsymmorphic superconductors, Phys. Rev. B 94, 134512 (2016).

[19] K. Funada, A. Yamakage, N. Yamashina, and H. Kageyama, Spin-orbit-coupling-induced type-I/type-II Dirac nodal-line metal in nonsymmorphic CaSb2, J. Phys. Soc. Jpn. 88, 044711 (2019).

[20] K. Momma and F. Izumi, VESTA 3 for three-dimensional visu- alization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44, 1272 (2011).

[21] U. Ayachit, The ParaView Guide: A Parallel Visualization Ap- plication (Kitware Inc., Clifton Park, NY, USA, 2015)

[22] A. Ikeda, M. Kawaguchi, S. Koibuchi, T. Hashimoto, T. Kawakami, S. Yonezawa, M. Sato, and Y. Maeno, Supercon- ductivity in the nonsymmorphic line-nodal compound CaSb2, Phys. Rev. Materials 4, 041801(R) (2020).

[23] H. Takahashi, S. Kitagawa, K. Ishida, M. Kawaguchi, A. Ikeda,

onezawa, and Y. Maeno, S-wave superconductivity in the Dirac line-nodal material CaSb2, J. Phys. Soc. Jpn. 90, 073702 (2021).

[24] S. Kitagawa, K. Ishida, A. Ikeda, M. Kawaguchi, S. Yonezawa, and Y. Maeno, Peak in the superconducting transition tempera- ture of the nonmagnetic topological line-nodal material CaSb2 under pressure, Phys. Rev.B 104, L060504 (2021).

[25] S. Ono, H. C. Po, and K. Shiozaki, Z2-enriched symme-try indicators for topological superconductors in the 1651 magnetic space groups, Phys. Rev. Research 3, 023086 (2021).

[26] M. Oudah, J. Bannies, D. A. Bonn, and M. C. Aronson, Su- perconductivity and quantum oscillations in single crystals of the compensated semimetal CaSb2, Phys. Rev. B 105, 184504 (2022).

[27] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.106.075151 for basic properties of the crys- tals: x-ray diffraction pattern, AC susceptibility, resistivity, and calculated band structure.

[28] S. Yonezawa, T. Higuchi, Y. Sugimoto, C. Sow, and Y. Maeno, Compact AC susceptometer for fast sample characterization down to 0.1 K, Rev. Sci. Instrum. 86, 093903 (2015).

[29] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,L. Martin-Samos et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009).

[30] P. Giannozzi Jr, O. Andreussi, T. Brumme, O. Bunau,M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. D. Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo et al., Ad- vanced capabilities for materials modelling with QUAN- TUM ESPRESSO, J. Phys.: Condens. Matter 29, 465901 (2017).

[31] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gra- dient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[32] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999).

[33] A. Dal Corso, Pseudopotentials periodic table: From H to Pu, Comput. Mater. Sci. 95, 337 (2014).

[34] M. Buongiorno Nardelli, F. T. Cerasoli, M. Costa, S. Curtarolo,R. De Gennaro, M. Fornari, L. Liyanage, A. R. Supka, andH. Wang, PAOFLOW: A utility to construct and operate on ab initio Hamiltonians from the projections of electronic wave functions on atomic orbital bases, including characteri- zation of topological materials, Comput. Mater. Sci. 143, 462 (2018).

[35] F. T. Cerasoli, A. R. Supka, A. Jayaraj, M. Costa, I. Siloi,J. Sławin´ska, S. Curtarolo, M. Fornari, D. Ceresoli, and M. Buongiorno Nardelli, Advanced modeling of materials with PAOFLOW 2.0: New features and software design, Comput. Mater. Sci. 200, 110828 (2021).

[36] P. Rourke and S. Julian, Numerical extraction of de Haas–van Alphen frequencies from calculated band energies, Comput. Phys. Commun. 183, 324 (2012).

[37] D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984).

[38] T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54, 437 (1982).

[39] N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Tempera- ture and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects, Phys. Rev. 147, 295 (1966).

[40] A. Gurevich, Enhancement of the upper critical field by non- magnetic impurities in dirty two-gap superconductors, Phys. Rev. B 67, 184515 (2003).

[41] M. Tinkham, Introduction to Superconductivity (Dover Publica- tions, New York, 2004).

[42] A. A. Abrikosov, Fundamentals of the Theory of Metals (Else- vier Science, Amsterdam, 1988).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る