リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Observation of inverted band structure in the topological Dirac semimetal candidate CaAuAs」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Observation of inverted band structure in the topological Dirac semimetal candidate CaAuAs

Kosuke Nakayama Zhiwei Wan Daichi Takane Seigo Souma Yuya Kubota Yuki Nakata Cephise Cacho Timur Kim Sandy Adhitia Ekahana Ming Shi Miho Kitamura Koji Horiba Hiroshi Kumigashira Takashi Takahashi Yoichi Ando Takafumi Sato 東北大学 DOI:10.1103/PhysRevB.102.041104

2020.07.06

概要

We have performed high-resolution angle-resolved photoemission spectroscopy of ternary pnictide CaAuAs which is predicted to be a three-dimensional topological Dirac semimetal (TDS). By accurately determining the bulk-band structure, we have revealed the coexistence of three-dimensional and quasi-two-dimensional Fermi surfaces with dominant hole carriers. The band structure around the Brillouin-zone center is characterized by an energy overlap between hole and electron pockets, in excellent agreement with first-principles band-structure calculations. This indicates the occurrence of bulk-band inversion, supporting the TDS state in CaAuAs. Because of the high tunability in the chemical composition besides the TDS nature, CaAuAs provides a precious opportunity for investigating the quantum phase transition from TDS to other exotic topological phases.

この論文で使われている画像

参考文献

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

[3] Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).

[4] S. Murakami, New J. Phys. 9, 356 (2007).

[5] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).

[6] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).

[7] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013).

[8] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Science 343, 864-867 (2014).

[9] Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, Nat. Mater. 13, 677-681 (2014).

[10] M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z.Hasan, Nat. Commun. 5, 3786 (2014).

[11] S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. B¨uchner, and R. J. Cava, Phys. Rev. Lett. 113, 027603 (2014).

[12] T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Nat. Mater. 14, 280 (2014).

[13] J. Feng, Y. Pang, D. Wu, Z. Wang, H. Weng, J. Li, X. Dai, Z. Fang, Y. Shi, and L. Lu, Phys. Rev. B 92, 081306(R) (2015).

[14] J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Science 350, 413 (2015).

[15] S. Kobayashi and M. Sato, Phys. Rev. Lett. 115, 187001 (2015).

[16] T. Kariyado and M. Ogata, J. Phys. Soc. Jpn. 80, 083704 (2011).

[17] Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, Phys. Rev. B 91, 205128 (2015).

[18] R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Phys. Rev. Lett. 115, 036807 (2015).

[19] W. Cao, P. Tang, S.-C. Zhang, W. Duan, and A. Rubio, Phys. Rev. B 93, 241117(R) (2016).

[20] G. Li, B. Yan, Z. Wang, and K. Held, Phys. Rev. B 95, 035102 (2017).

[21] C. Le, S. Qin, X. Wu, X. Dai, P. Fu, C. Fang, and J. Hu, Phys. Rev. B 96, 115121 (2017).

[22] X. Zhang, L. Jin, X. Dai, and G. Liu, J. Phys. Chem. Lett. 8, 4814-4819 (2017).

[23] Y. Du, F. Tang, D. Wang, L. Sheng, E. Kan, C.-G. Duan, S. Y. Savrasov, and X. Wan, npj Quantum Mater. 2, 3 (2017).

[24] H. Huang and F. Liu, Phys. Rev. B 95, 201101(R) (2017).

[25] T.-T. Zhang, Z.-M. Yu, W. Guo, D. Shi, G. Zhang, and Y. Yao, J. Phys. Chem. Lett. 8, 5792-5797 (2017).

[26] P.-J. Guo, H.-C. Yang, K. Liu, and Z.-Y. Lu, Phys. Rev. B 95, 155112 (2017).

[27] T.-R. Chang, S.-Y. Xu, D. S. Sanchez, W.-F. Tsai, S.-M. Huang, G. Chang, C.-H. Hsu, G. Bian, I. Belopolski, Z.- M. Yu, S. A. Yang, T. Neupert, H.-T. Jeng, H. Lin, and M. Z. Hasan, Phys. Rev. Lett. 119, 026404 (2017).

[28] C. Chen, S.-S. Wang, L. Liu, Z.-M. Yu, X.-L. Sheng, Z. Chen, and S. A. Yang, Phys. Rev. Materials 1, 044201 (2017).

[29] B. Singh, S. Mardanya, C. Su, H. Lin, A. Agarwal, and A. Bansil, Phys. Rev. B 98, 085122 (2018).

[30] S. Mardanya, B. Singh, S.-M. Huang, T.-R. Chang, C. Su, H. Lin, A. Agarwal, and A. Bansil, Phys. Rev. Materials 3, 071201(R) (2019).

[31] L. Tsetseris, J. Phys.: Condens. Matter 29, 045701 (2017).

[32] C. Chen, Z. Su, X. Zhang, Z. Chen, and X.-L. Sheng, J. Phys. Chem. C 121, 28587-28593 (2017).

[33] L. M. Schoop, M. N. Ali, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lostch, and C. R. Ast, Nat. Commun. 7, 11696 (2016).

[34] D. Takane, Z. Wang, S. Souma, K. Nakayama, C. X. Trang, T. Sato, T. Takahashi, and Y. Ando, Phys. Rev. B 94, 121108(R) (2016).

[35] D. Takane, K. Nakayama, S. Souma, T. Wada, Y. Okamoto, K. Takenaka, Y. Yamakawa, A. Yamakage, T.Mitsuhashi, K. Horiba, H. Kumigashira, T. Takahashi, and T. Sato, npj Quantum Mater. 3, 1 (2018).

[36] S. Xu, H. Wang, Y.-Y. Wang, Y. Su, X.-Y. Wang, and T.-L. Xia, J. Cryst. Growth 531, 125304 (2020).

[37] M. Hoesch, T. K. Kim, P. Dudin, H. Wang, S. Scott, P. Harris, S. Patel, M. Matthews, D. Hawkins, S. G. Alcock, T. Richter, J. J. Mudd, M. Basham, L. Pratt, P. Leicester, E. C. Longhi, A. Tamai, and F. Baumberger, Rev. Sci. Instrum. 88, 013106 (2017).

[38] See Supplemental Material for the characterization of cleaved surface and for the existence of h2 band and its quasi two-dimensional nature.

参考文献をもっと見る