リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Contact metric structures on 3-dimensional manifolds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Contact metric structures on 3-dimensional manifolds

山本 明夫 富山大学

2022.03.23

概要

A differentiable manifold M 2n+1 is said to have a contact structure or to be a contact manifold if there exists a 1-form η over M 2n+1 such that η ∧ (dη )n ̸= 0. The condition η ∧ (dη )n ̸= 0 means that a contact manifold is orientable. It is known that a smooth hypersurface satisfying some conditions has a contact structure. As a special case S 2n+1 is a contact manifold. When a contact form η is given on M 2n+1 , there exists a system (ξ , φ, g ) of a vector field ξ , a tensor field φ of type (1,1) and a Riemannian metric g , which called a contact metric structure.

On the other hand the notion of almost contact metric structures is a generalization of the notion of contact metric structures. An almost contact metric structure does not assume the condition η ∧ (dη )n ̸= 0. From the point of view of the Riemannian geometry of contact metric manifolds we consider K-contact structures.

This paper consists of three chapters. In Chapter 1 we mention the notion of an almost contact metric structure (φ, ξ , η , g ) on M 2n+1 and give its examples. Next we show that on an almost contact metric manifold M 2n+1 we can construct a useful orthonormal basis called φ-basis. And we explain that on the almost contact metric manifold R2n+1 the sectional curvature of a vector X orthogonal to ξ and φX is equal to −3. Finally we show that on the Heisenberg group HR identified with R3left translation preserves η and g is a left invariant metric.

Chapter 2 we mention the notion of a contact metric structure (φ, ξ , η , g ) and give its examples. Remark that for a contact form η , ξ is unique but g and φ are not necessarily unique. Next we show that in Hopf ’s mapping π : S 3 −→ S 2 the value of dπ (ξ ) is equal to 0. Moreower we mention the notion of K-contact structure. We consider the sectional curvature of K-contact manifold M 2n+1 . Finally we check that the almost contact metric structure on M 2n × R is not a contact metric structure.

It is known that every compact orientable 3-dimensional manifold has a contact structure. In Chapter 3 we consider 3-dimensional contact manifolds, especially S 3 , R 3 and T 3 . We give a typical contact form η on S 3 , R3 and T 3 respectively. Then we completely determine their contact metric structures. Next, we check that such contact metric structures are η -Einstein or not. If M 3 = S 3 , (φ, ξ , η , g ) is η -Einstein if and only if g is the standard metric. If M 3 = R3 , all (φ, ξ , η , g ) are η -Einstein. If M 3 = T 3 , one parameter family of (φ, ξ , η , g ) are η -Einstein. We check that such contact metric structures are Sasakian or not. If M 3 = S 3 , (φ, ξ , η , g ) is Sasakian if and only if g is the standard metric. If M 3 = R3 , all (φ, ξ , η , g ) are Sasakian. If M 3 = T 3 , all (φ, ξ , η , g ) are not Sasakian. We check that such contact metric structures are K-contact or not. If M 3 = S 3 , (φ, ξ , η , g ) is K-contact if and only if g is the standard metric. If M 3 = R3 , all (φ, ξ , η , g ) are K-contact. If M 3 = T 3 , all (φ, ξ , η , g ) are not K-contact.

参考文献

[1] A.L. Besse, Einstein Manifolds, Ergeb. Math. Crenzbeb. 3. Foge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987.

[2] D.E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.

[3] D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics 203 Birkh¨auser, Boston, Basel, Berlin 2001.

[4] D.E. Blair, T. Koufogiorgos and R. Sharma, A classification of 3- dimensional contact metric manifolds with Qφ = φQ, Kodai Math. J., 13(1990), 391-401.

[5] D.E. Blair and J.N. Patnaik, Contact manifolds with characteristic vec- tor field annihilated by the curvature, Bull. Inst. Math. Acad. Sinica, 9(1981), 533-545.

[6] R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differ- ential Geometry, 17(1982), 255-306.

[7] M. Okumura, On infinitesimal conformal and projective transformations of normal contact spaces, Tˆohoku Math. J., 14(1962), 398-412.

[8] B. O’Neill,The fundamental equations of a submersion,Michigan Math.J.,13(1966),459-469.

[9] S. Sasaki,M. Awata and S. Kyo, Contact structure and Almost contact structure,Mathematics,16(1964), 27-41.

[10] F. Torralbo,Compact minimal surfaces in Berger spheres,Ann. Gob. Anal. Geom.,41(2012), 391-405.

[11] A. Yamammoto, Contact metric structures with the typical contact form on the 3-dimensional manifold, Toyama Math. J., 41(2020), 61-81.

[12] K. Yano and M. Kon, CR Submanifolds of Kaehlerinan and Sasakian Manifolds, Progress in Mathematics 30, Birkh¨auser, Boston, Basel, Stuttgart, 1983.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る