リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mutation spectrum and health status in skeletal muscle channelopathies in Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mutation spectrum and health status in skeletal muscle channelopathies in Japan

Sasaki, Ryogen 大阪大学

2020.07.01

概要

Skeletal muscle channelopathies, including non-dystrophic myotonia and periodic paralysis, are rare hereditary disorders caused by mutations of various ion channel genes. To define the frequency of associated mutations of skeletal muscle channelopathies in Japan, clinical and genetic data of two academic institutions, which provides genetic analysis service, were reviewed. Of 105 unrelated pedigrees genetically confirmed, 66 pedigrees were non-dystrophic myotonias [CLCN1 (n = 30) and SCN4A (n = 36)], 11 were hyperkalemic periodic paralysis (SCN4A), and 28 were hypokalemic periodic paralysis [CACNA1S (n = 16) and SCN4A (n = 12)]. Of the 30 families with myotonia congenita, dominant form (Thomsen type) consisted 67%, and unique mutations, A298T, P480T, T539A, and M560T, not found in Western countries, were commonly identified in CLCN1. Hypokalemic periodic paralysis caused by SCN4A mutations consisted 43% in Japan, which was much higher than previous reports. Furthermore, the quality of life of the patients was assessed using the patient-reported outcome measures, SF-36 and INQoL, for 41 patients. This study indicated that the etiology of skeletal muscle channelopathies in Japan was not identical to previous reports from Western countries, and provided crucial information for genetics as well as future therapeutic interventions.

この論文で使われている画像

参考文献

[1] Cannon SC. Channelopathies of skeletal muscle excitability. Compr Physiol 2015;5:761–90. doi:10.1002/cphy.c140062.

[2] Matthews E, Fialho D, Tan S V, Venance SL, Cannon SC, Sternberg D, et al. The non- dystrophic myotonias: molecular pathogenesis, diagnosis and treatment. Brain 2010;133:9–22. doi:10.1093/brain/awp294.

[3] Venance SL, Cannon SC, Fialho D, Fontaine B, Hanna MG, Ptacek LJ, et al. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain 2006;129:8–17. doi:10.1093/brain/awh639.

[4] Nam T-S, Jung H-J, Choi S-Y, Kim Y-O, Kim M-K, Cho K-H. Clinical Characteristics and Analysis of CLCN1 in Patients with "EMG Disease". J Clin Neurol 2012;8:212–7. doi:10.3988/jcn.2012.8.3.212.

[5] Liu X-L, Huang X-J, Shen J-Y, Zhou H-Y, Luan X-H, Wang T, et al. Myotonia congenita: novel mutations in CLCN1 gene. Channels (Austin) 2015;9:292–8. doi:10.1080/19336950.2015.1075676.

[6] Sansone VA, Panzeri M, Montanari M, Apolone G, Gandossini S, Rose MR, et al. Italian validation of INQoL, a quality of life questionnaire for adults with muscle diseases. Eur J Neurol 2010;17:1178–87. doi:10.1111/j.1468-1331.2010.02992.x.

[7] Sansone VA, Ricci C, Montanari M, Apolone G, Rose M, Meola G, et al. Measuring quality of life impairment in skeletal muscle channelopathies. Eur J Neurol 2012;19:1470–6. doi:10.1111/j.1468-1331.2012.03751.x.

[8] Trivedi JR, Bundy B, Statland J, Salajegheh M, Rayan DR, Venance SL, et al. Non-dystrophic myotonia: prospective study of objective and patient reported outcomes. Brain 2013;136:2189–200. doi:10.1093/brain/awt133.

[9] Statland JM, Bundy BN, Wang Y, Rayan DR, Trivedi JR, Sansone VA, et al. Mexiletine for symptoms and signs of myotonia in nondystrophic myotonia: a randomized controlled trial. JAMA 2012;308:1357–65. doi:10.1001/jama.2012.12607.

[10] Exome Aggregation Consortium n.d. http://exac.broadinstitute.org/.

[11] American College of Medical Genetics and Genomics n.d. https://www.acmg.net/ACMG/Medical-Genetics-Practice-Resources/Practice- Guidelines.aspx.

[12] Fukuhara S, Bito S, Green J, Hsiao A, Kurokawa K. Translation, adaptation, and validation of the SF-36 Health Survey for use in Japan. J Clin Epidemiol 1998;51:1037–44.

[13] Vincent KA, Carr AJ, Walburn J, Scott DL, Rose MR. Construction and validation of a quality of life questionnaire for neuromuscular disease (INQoL). Neurology 2007;68:1051–7. doi:10.1212/01.wnl.0000257819.47628.41.

[14] Fujino H, Saito T, Takahashi MP, Takada H, Nakayama T, Ogata K, et al. Validation of The Individualized Neuromuscular Quality of Life in Japanese patients with myotonic dystrophy. Muscle Nerve 2018;58:56–63. doi:10.1002/mus.26071.

[15] Mahoney FI, Barthel DW. Functional evaluation: The Barthel Index. Md State Med J 1965;14:61–5.

[16] Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992;30:473–83.

[17] Sasaki R, Takahashi MP, Kokunai Y, Hirayama M, Ibi T, Tomimoto H, et al. Compound heterozygous mutations in the muscle chloride channel gene (CLCN1) in a Japanese family with Thomsen’s disease. Clin Neurol 2013;53:316–9. doi:10.5692/clinicalneurol.53.316.

[18] Zhang J, George AL, Griggs RC, Fouad GT, Roberts J, Kwieciński H, et al. Mutations in the human skeletal muscle chloride channel gene (CLCN1) associated with dominant and recessive myotonia congenita. Neurology 1996;47:993–8. doi:10.1212/wnl.47.4.993.

[19] Plassart-Schiess E, Gervais A, Eymard B, Lagueny A, Pouget J, Warter JM, et al. Novel muscle chloride channel (CLCN1) mutations in myotonia congenita with various modes of inheritance including incomplete dominance and penetrance. Neurology 1998;50:1176–9. doi:10.1212/wnl.50.4.1176.

[20] Raheem O, Penttilä S, Suominen T, Kaakinen M, Burge J, Haworth A, et al. New immunohistochemical method for improved myotonia and chloride channel mutation diagnostics. Neurology 2012;79:2194–200. doi:10.1212/WNL.0b013e31827595e2.

[21] Sun C, Tranebjaerg L, Torbergsen T, Holmgren G, Van Ghelue M. Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia. Eur J Hum Genet 2001;9:903–9. doi:10.1038/sj.ejhg.5200736.

[22] Papponen H, Toppinen T, Baumann P, Myllylä V, Leisti J, Kuivaniemi H, et al. Founder mutations and the high prevalence of myotonia congenita in northern Finland. Neurology 1999;53:297–302. doi:10.1212/wnl.53.2.297.

[23] Gao F, Ma FC, Yuan ZF, Yang CW, Li HF, Xia ZZ, et al. Novel chloride channel gene mutations in two unrelated Chinese families with myotonia congenita. Neurol India 2010;58:743–6. doi:10.4103/0028-3886.72163.

[24] Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC. Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet 1995;57:1325–34.

[25] Sasaki R, Ito N, Shimamura M, Murakami T, Kuzuhara S, Uchino M, et al. A novel CLCN1 mutation: P480T in a Japanese family with Thomsen’s myotonia congenita. Muscle Nerve 2001;24:357–63.

[26] Tsujino A, Kaibara M, Hayashi H, Eguchi H, Nakayama S, Sato K, et al. A CLCN1 mutation in dominant myotonia congenita impairs the increment of chloride conductance during repetitive depolarization. Neurosci Lett 2011;494:155–60. doi:10.1016/j.neulet.2011.03.002.

[27] Chin HJ, Kim CH, Ha K, Shin JH, Kim D-S, So I. Electrophysiological characteristics of R47W and A298T mutations in CLC-1 of myotonia congenita patients and evaluation of clinical features. Korean J Physiol Pharmacol 2017;21:439–47. doi:10.4196/kjpp.2017.21.4.439.

[28] Yang X, Jia H, An R, Xi J, Xu Y. Sequence CLCN1 and SCN4A in patients with Nondystrophic myotonias in Chinese populations: Genetic and pedigree analysis of 10 families and review of the literature. Channels 2017;11:55–65. doi:10.1080/19336950.2016.1212140.

[29] Dupré N, Chrestian N, Bouchard J-P, Rossignol E, Brunet D, Sternberg D, et al. Clinical, electrophysiologic, and genetic study of non-dystrophic myotonia in French-Canadians. Neuromuscul Disord 2009;19:330–4. doi:10.1016/j.nmd.2008.01.007.

[30] Stunnenberg BC, Raaphorst J, Deenen JCW, Links TP, Wilde AA, Verbove DJ, et al. Prevalence and mutation spectrum of skeletal muscle channelopathies in the Netherlands. Neuromuscul Disord 2018;28:402–7. doi:10.1016/j.nmd.2018.03.006.

[31] Horga A, Raja Rayan DL, Matthews E, Sud R, Fialho D, Durran SCM, et al. Prevalence study of genetically defined skeletal muscle channelopathies in England. Neurology 2013;80:1472–5. doi:10.1212/WNL.0b013e31828cf8d0.

[32] Maggi L, Lo Monaco M, Portaro S, Meola G, Desaphy J, Lucchiari S, et al. Prevalence study of muscle channelopathies in Italy. Neuromuscul Disord 2016;26:S197. doi:10.1016/j.nmd.2016.06.400.

[33] Kubota T, Roca X, Kimura T, Kokunai Y, Nishino I, Sakoda S, et al. A mutation in a rare type of intron in a sodium-channel gene results in aberrant splicing and causes myotonia. Hum Mutat 2011;32:773-782. doi:10.1002/humu.21501.

[34] Kibe T, Ohtaka K, Misawa C, Iketani M, Ito Y, Mori Y, et al. A Case of myotonia permanens with a variant in SCN4A gene. No to Hattatsu, 2010; 42:388 (Conference Pap. Japanese only).

[35] Kato H, Kokunai Y, Dalle C, Kubota T, Madokoro Y, Yuasa H, et al. A case of non- dystrophic myotonia with concomitant mutations in the SCN4A and CLCN1 genes. J Neurol Sci 2016;369:254–8. doi:10.1016/j.jns.2016.08.030.

[36] Furby A, Vicart S, Camdessanché JP, Fournier E, Chabrier S, Lagrue E, et al. Heterozygous CLCN1 mutations can modulate phenotype in sodium channel myotonia. Neuromuscul Disord 2014;24:953–9. doi:10.1016/j.nmd.2014.06.439.

[37] Matthews E, Labrum R, Sweeney MG, Sud R, Haworth A, Chinnery PF, et al. Voltage sensor charge loss accounts for most cases of hypokalemic periodic paralysis. Neurology 2009;72:1544–7. doi:10.1212/01.wnl.0000342387.65477.46.

[38] Davies NP, Eunson LH, Samuel M, Hanna MG. Sodium channel gene mutations in hypokalemic periodic paralysis: an uncommon cause in the UK. Neurology 2001;57:1323–5. doi:10.1212/wnl.57.7.1323.

[39] Sternberg D, Maisonobe T, Jurkat-Rott K, Nicole S, Launay E, Chauveau D, et al. Hypokalaemic periodic paralysis type 2 caused by mutations at codon 672 in the muscle sodium channel gene SCN4A. Brain 2001;124:1091–9. doi:10.1093/brain/124.6.1091.

[40] Burns TM, Graham CD, Rose MR, Simmons Z. Quality of life and measures of quality of life in patients with neuromuscular disorders. Muscle Nerve 2012;46:9–25. doi:10.1002/mus.23245.

[41] Coathup V, Teare HJA, Minari J, Yoshizawa G, Kaye J, Takahashi MP, et al. Using digital technologies to engage with medical research: views of myotonic dystrophy patients in Japan. BMC Med Ethics 2016;17:51. doi:10.1186/s12910-016-0132-2.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る