リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Elucidation of the Signal Transduction Mechanism of Homodimeric Plexin B1 Studied by Engineered Dimer-inducing Proteins」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Elucidation of the Signal Transduction Mechanism of Homodimeric Plexin B1 Studied by Engineered Dimer-inducing Proteins

中村, 希 大阪大学

2021.03.24

概要

Semaphorin-Plexin signaling axis plays a variety of roles in our body including axon guidance, immunomodulation, and angiogenesis. Among them, signaling by Semaphorin 4D (SEMA4D) through its receptor Plexin B1 (PlxnB1) is considered as one of the important targets for drug discovery in the field of cancer and bone metabolism.
 Both PlxnB1 and SEMA4D are type-I transmembrane proteins that have a common Sema domain at the N- terminus, followed by two (SEMA4D) or nine (PlxnB1) additional domains in their extracellular region. PlxnB1 has a large cytoplasmic GTPase-activating protein (GAP) domain, which is thought to be activated during the signal transduction by SEMA4D. Crystal structure of the complex between short ectodomain fragments of SEMA4D and PlxnB1 have revealed that two monomeric PlxnB1 Sema domains bind separately to each of the homodimeric Sema domains of SEMA4D, resulting in a 2:2 tetramer structure. This leads to a general hypothesis that PlxnB1 ectodomain dimerization induced by the homodimeric SEMA4D engagement activates its intracellular GAP domain to trigger the signaling, although it is not clear whether a specific dimeric structure is required for the signaling.
 If PlxnB1 dimerization at the N-terminal Sema domain alone is sufficient for the signaling, non- physiological dimerizing agents should act as PlxnB1 agonists. To examine this hypothesis, I decided to make use of two cyclic peptides PB1m7 and PB1m6A9 that are known to bind Sema domain of PlxnB1, and constructed various artificial bivalent proteins. I employed the design strategy developed recently in the lab, where the internal sequence of macrocyclic peptides were inserted into loops on the surface of Fc region of human IgG. By inserting the PlxnB1-binding cyclic peptide moieties into the rigid and homodimeric Fc scaffold, I envisioned that each peptide-inserted Fc would induce unique dimeric conformation of PlxnB1 upon the binding to the Sema domain.
 The effect of various peptide-inserted Fc on the PlxnB1 signaling was examined by measuring the changes in morphology of PlxnB1-expressing cells. The results showed that some of the PB1m7-inserted Fcs induced “cell collapse” response similar to that triggered by the physiological ligand SEMA4D, suggesting that bivalent PB1m7 can function as PlxnB1 agonist. On the other hand, bivalent form of another cyclic peptide, PB1m6A9, was not only incapable of changing the cell morphology by itself, but rather it suppressed SEMA4D-induced PlxnB1 activation and behaved as an antagonist. These results indicate that simple cross-linking of two PlxnB1 molecules through their Sema domain is insufficient to trigger its activity, but the dimerization must occur through certain conformation (e.g., that induced by either SEMA4D or Fc-PB1m7).
 The contrasting effects of the two peptide-Fc fusions in cell-based assay strongly suggest that they bind distinct surface of PlxnB1 Sema domain and induce different dimeric structures. To deduce the conformation of the dimeric PlxnB1 induced by the agonistic and antagonistic peptide-Fc fusions, I determined the crystal structure of PlxnB1 Sema domain bound by monomeric version of PB1m7 or PB1m6A9 fused to a small globular protein uteroglobin, and identified their binding positions. As expected, the binding sites for the two peptides were located at completely different faces on the Sema domain. Based on the peptide docking poses determined above, conformations of the dimeric PlxnB1 cross-linked by agonistic PB1m7-Fc and antagonistic PB1m6A9-Fc were simulated, revealing that the former produced a face-to-face dimer similar to that generated by SEMA4D, while the latter formed a completely different side-to-side dimer. Thus, I succeeded in elucidating the conformation-specific PlxnB1 activation mechanism by showing both signaling competent and incompetent dimer conformations.

参考文献

1. Latorraca NR, Venkatakrishnan AJ, Dror RO. GPCR dynamics: Structures in motion. Chem Rev. 2017;117(1):139-155. doi:10.1021/acs.chemrev.6b00177

2. Manglik A, Kruse AC. Structural Basis for G Protein-Coupled Receptor Activation. Biochemistry. 2017;56(42):5628-5634. doi:10.1021/acs.biochem.7b00747

3. Waters MJ, Hoang HN, Fairlie DP, Pelekanos RA, Brown RJ. New insights into growth hormone action. J Mol Endocrinol. 2006;36(1):1-7. doi:10.1677/jme.1.01933

4. de Vos AM, Ultsch M, Kossiakoff AA. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 1992;255(5042):306-312. doi:10.1016/0753-3322(93)90042-J

5. Gent J, Van Kerkhof P, Roza M, Bu G, Strous GJ. Ligand-independent growth hormone receptor dimerization occurs in the endoplasmic reticulum and is required for ubiquitin system-dependent endocytosis. Proc Natl Acad Sci U S A. 2002;99(15):9858-9863. doi:10.1073/pnas.152294299

6. Brown RJ, Adams JJ, Pelekanos RA, et al. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Nat Struct Mol Biol. 2005;12(9):814-821. doi:10.1038/nsmb977

7. Arteaga CL, Engelman JA. ERBB receptors: From oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25(3):282-303. doi:10.1016/j.ccr.2014.02.025

8. Downward J, Yarden Y, Mayes E, et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature. 1984;307(9):521-527.

9. Kovacs E, Zorn JA, Huang Y, Barros T, Kuriyan J. A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem. 2015;84:739-764. doi:10.1146/annurev-biochem-060614-034402

10. Avraham R, Yarden Y. Feedback regulation of EGFR signalling: Decision making by early and delayed loops. Nat Rev Mol Cell Biol. 2011;12(2):104-117. doi:10.1038/nrm3048

11. Endres NF, Engel K, Das R, Kovacs E, Kuriyan J. Regulation of the catalytic activity of the EGF receptor. Curr Opin Struct Biol. 2011;21(6):777-784. doi:10.1016/j.sbi.2011.07.007

12. Lemmon MA, Schlessinger J, Ferguson KM. The EGFR family: Not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol. 2014;6(4). doi:10.1101/cshperspect.a020768

13. Ogiso H, Ishitani R, Nureki O, et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell. 2002;110(6):775-787. doi:10.1016/S0092-8674(02)00963-7

14. Garrett TPJ, McKern NM, Lou M, et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor α. Cell. 2002;110(6):763-773. doi:10.1016/S0092-8674(02)00940- 6

15. Ferguson KM, Berger MB, Mendrola JM, Cho H-S, Leahy DJ, Lemmon MA. EGF Activates Its Receptor by Removing Interactions that Autoinhibit Ectodomain Dimerization. Mol Cell. 2003;11(2):507-517. doi:10.1016/S1097- 2765(03)00047-9

16. Endres NF, Das R, Smith AW, et al. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell. 2013;152(3):543-556. doi:10.1016/j.cell.2012.12.032

17. Arkhipov A, Shan Y, Das R, et al. Architecture and membrane interactions of the EGF receptor. Cell. 2013;152(3):557-569. doi:10.1016/j.cell.2012.12.030

18. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. An Allosteric Mechanism for Activation of the Kinase Domain of Epidermal Growth Factor Receptor. Cell. 2006;125(6):1137-1149. doi:10.1016/j.cell.2006.05.013

19. Jura N, Endres NF, Engel K, et al. Mechanism for Activation of the EGF Receptor Catalytic Domain by the Juxtamembrane Segment. Cell. 2009;137(7):1293-1307. doi:10.1016/j.cell.2009.04.025

20. Red Brewer M, Choi SH, Alvarado D, et al. The Juxtamembrane Region of the EGF Receptor Functions as an Activation Domain. Mol Cell. 2009;34(6):641- 651. doi:10.1016/j.molcel.2009.04.034

21. Chataigner LMP, Leloup N, Janssen BJC. Structural Perspectives on Extracellular Recognition and Conformational Changes of Several Type-I Transmembrane Receptors. Front Mol Biosci. 2020;7(August):1-13. doi:10.3389/fmolb.2020.00129

22. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3(9):745-756. doi:10.1038/nri1184

23. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell. 2001;104(4):487-501. doi:10.1016/S0092- 8674(01)00237-9

24. Bodmer J-L, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci. 2002;27(1):19-26. doi:10.1016/S0968- 0004(01)01995-8

25. Sudhamsu J, Yin JP, Chiang EY, Starovasnik MA, Grogan JL, Hymowitz SG. Dimerization of LTβR by LTα1β2 is necessary and sufficient for signal transduction. Proc Natl Acad Sci U S A. 2013;110(49):19896-19901. doi:10.1073/pnas.1310838110

26. Chattopadhyay K, Ramagopal UA, Brenowitz M, Nathenson SG, Almo SC. Evolution of GITRL immune function: Murine GITRL exhibits unique structural and biochemical properties within the TNF superfamily. Proc Natl Acad Sci. 2008;105(2):635 LP - 640. doi:10.1073/pnas.0710529105

27. Vanamee ÉS, Faustman DL. Structural principles of tumor necrosis factor superfamily signaling. Sci Signal. 2018;11(511):1-12. doi:10.1126/scisignal.aao4910

28. Banner DW, D’Arcy A, Janes W, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: Implications for TNF receptor activation. Cell. 1993;73(3):431-445. doi:10.1016/0092-8674(93)90132-A

29. Mukai Y, Nakamura T, Yoshikawa M, et al. Solution of the structure of the TNF- TNFR2 complex. Sci Signal. 2010;3(148):1-11. doi:10.1126/scisignal.2000954

30. Hsu H, Xiong J, Goeddel D V. The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell. 1995;81(4):495-504. doi:10.1016/0092-8674(95)90070-5

31. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of fas and initiates apoptosis. Cell. 1995;81(4):505-512. doi:10.1016/0092-8674(95)90071-3

32. Stanger BZ, Leder P, Lee TH, Kim E, Seed B. RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell. 1995;81(4):513-523. doi:10.1016/0092-8674(95)90072-1

33. Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors ( TRAFs ). Oncogene. 2001;20(1):6482-6491. doi:10.1038/sj.onc.1204788

34. Torrey H, Butterworth J, Mera T, et al. Targeting TNFR2 with antagonistic antibodies inhibits proliferation of ovarian cancer cells and tumor-associated Tregs. Sci Signal. 2017;10(462). doi:10.1126/scisignal.aaf8608

35. Kolodkin AL, Matthes DJ, Goodman CS. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell. 1993;75(7):1389-1399. doi:10.1016/0092-8674(93)90625-Z

36. Bamberg JA, Baumgartner S, Betz H, et al. Unified nomenclature for the semaphorins/collapsins [1]. Cell. 1999;97(5). doi:10.1016/S0092-8674(00)80766-7

37. Tamagnone L, Artigiani S, Chen H, et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell. 1999;99(1):71-80. doi:10.1016/S0092-8674(00)80063-X

38. Worzfeld T, Offermanns S. Semaphorins and plexins as therapeutic targets. Nat Rev Drug Discov. 2014;13(8):603-621. doi:10.1038/nrd4337

39. Gherardi E, Love CA, Esnouf RM, Jones EY. The sema domain. Curr Opin Struct Biol. 2004;14(6):669-678. doi:10.1016/j.sbi.2004.10.010

40. Bork P, Doerks T, Springer TA, Snel B. Domains in plexins: Links to integrins and transcription factors. Trends Biochem Sci. 1999;24(7):261-263. doi:10.1016/S0968-0004(99)01416-4

41. Rozbesky D, Robinson RA, Jain V, et al. Diversity of oligomerization in Drosophila semaphorins suggests a mechanism of functional fine-tuning. Nat Commun. 2019;10(1):1-12. doi:10.1038/s41467-019-11683-y

42. Liu H, Juo ZS, Shim AHR, et al. Structural Basis of Semaphorin-Plexin Recognition and Viral Mimicry from Sema7A and A39R Complexes with PlexinC1. Cell. 2010;142(5):749-761. doi:10.1016/j.cell.2010.07.040

43. Nogi T, Yasui N, Mihara E, et al. Structural basis for semaphorin signalling through the plexin receptor. Nature. 2010;467(7319):1123-1127. doi:10.1038/nature09473

44. Janssen BJC, Robinson RA, Pérez-Brangulí F, et al. Structural basis of semaphorin–plexin signalling. Nature. 2010;467(7319):1118-1122. doi:10.1038/nature09468

45. He H, Yang T, Terman JR, Zhang X. Crystal structure of the plexin A3 intracellular region reveals an autoinhibited conformation through active site sequestration. Proc Natl Acad Sci U S A. 2009;106(37):15610-15615. doi:10.1073/pnas.0906923106

46. Oinuma I, Katoh H, Negishi M. Semaphorin 4D/Plexin-B1-mediated R-Ras GAP activity inhibits cell migration by regulating β1 integrin activity. J Cell Biol. 2006;173(4):601-613. doi:10.1083/jcb.200508204

47. Wang H, Hota PK, Tong Y, et al. Structural basis of Rnd1 binding to plexin Rho GTPase binding domains (RBDs). J Biol Chem. 2011;286(29):26093-26106. doi:10.1074/jbc.M110.197053

48. Bell CH, Aricescu AR, Jones EY, Siebold C. A dual binding mode for RhoGTPases in plexin signalling. PLoS Biol. 2011;9(8). doi:10.1371/journal.pbio.1001134

49. Wang Y, He H, Srivastava N, et al. Plexins are gtpase-activating proteins for rap and are activated by induced dimerization. Sci Signal. 2012;5(215):1-13. doi:10.1126/scisignal.5215er2

50. Tong Y, Hota PK, Penachioni JY, et al. Structure and function of the intracellular region of the plexin-B1 transmembrane receptor. J Biol Chem. 2009;284(51):35962-35972. doi:10.1074/jbc.M109.056275

51. Capparuccia L, Tamagnone L. Semaphorin signaling in cancer cells and in cells of the tumor microenvironment - Two sides of a coin. J Cell Sci. 2009;122(11):1723-1736. doi:10.1242/jcs.030197

52. Neufeld G, Kessler O. The semaphorins: Versatile regulators of tumour progression and tumour angiogenesis. Nat Rev Cancer. 2008;8(8):632-645. doi:10.1038/nrc2404

53. Matsunaga Y, Bashiruddin NK, Kitago Y, Takagi J, Suga H. Allosteric Inhibition of a Semaphorin 4D Receptor Plexin B1 by a High-Affinity Macrocyclic Peptide. Cell Chem Biol. 2016;23(11):1341-1350. doi:10.1016/j.chembiol.2016.09.015

54. Bashiruddin NK, Matsunaga Y, Nagano M, Takagi J, Suga H. Facile Synthesis of Dimeric Thioether-Macrocyclic Peptides with Antibody-like Affinity against Plexin-B1. Bioconjug Chem. 2018;29(6):1847-1851. doi:10.1021/acs.bioconjchem.8b00219

55. Bashiruddin NK, Hayashi M, Nagano M, et al. Development of cyclic peptides with potent in vivo osteogenic activity through RaPID-based affinity maturation. Proc Natl Acad Sci. 2020:202012266. doi:10.1073/pnas.2012266117

56. Mihara E, Watanabe S, Bashiruddin N, et al. Lasso-grafting of macrocyclic peptide pharmacophores yields multi-functional proteins. Nat Commun. 2020. doi:10.1038/s41467-021-21875-0

57. Okuno T, Nakatsuji Y, Moriya M, et al. Roles of Sema4D–Plexin-B1 Interactions in the Central Nervous System for Pathogenesis of Experimental Autoimmune Encephalomyelitis. J Immunol. 2010;184(3):1499-1506. doi:10.4049/jimmunol.0903302

58. Smolkin T, Nir-zvi I, Duvshani N, Mumblat Y, Kessler O, Neufeld G. Complexes of plexin-A4 and plexin-D1 convey semaphorin-3C signals to induce cytoskeletal collapse in the absence of neuropilins. 2018:1-11. doi:10.1242/jcs.208298

59. Morize I, Surcouf E, Vaney MC, et al. Refinement of the C2221 crystal form of oxidized uteroglobin at 1.34 Å resolution. J Mol Biol. 1987;194(4):725-739. doi:10.1016/0022-2836(87)90250-6

60. Suzuki K, Tsunoda H, Omiya R, et al. Structure of the plexin ectodomain bound by semaphorin-mimicking antibodies. PLoS One. 2016;11(6):1-17. doi:10.1371/journal.pone.0156719

61. Kong Y, Janssen BJC, Malinauskas T, Padilla-parra S, Jones EY. Structural Basis for Plexin Activation and Regulation Article Structural Basis for Plexin Activation and Regulation. Neuron. 2016;91(3):548-560. doi:10.1016/j.neuron.2016.06.018

62. Kuo YC, Chen H, Shang G, et al. Cryo-EM structure of the PlexinC1/A39R complex reveals inter-domain interactions critical for ligand-induced activation. Nat Commun. 2020;11(1):1-12. doi:10.1038/s41467-020-15862-0

63. Ménard S, Pupa SM, Campiglio M, Tagliabue E. Biologic and therapeutic role of HER2 in cancer. Oncogene. 2003;22(43):6570-6578. doi:10.1038/sj.onc.1206779

64. Prat M, Crepaldi T, Pennacchietti S, Bussolino F, Comoglio PM. Agonistic monoclonal antibodies against the Met receptor dissect the biological responses to HGF. J Cell Sci. 1998;111(2):237-247.

65. Smith ES, Jonason A, Reilly C, et al. SEMA4D compromises blood-brain barrier, activates microglia, and inhibits remyelination in neurodegenerative disease. Neurobiol Dis. 2015;73:254-268. doi:10.1016/j.nbd.2014.10.008

66. Evans EE, Jonason AS, Bussler H, et al. Antibody blockade of Semaphorin 4D promotes immune infiltration into tumor and enhances response to other immunomodulatory therapies. Cancer Immunol Res. 2015;3(6):698-701. doi:10.1158/2326-6066.CIR-14-0171

67. Negishi-koga T, Shinohara M, Komatsu N, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17(11):1473-1480. doi:10.1038/nm.2489

68. Fujii Y, Kaneko M, Neyazaki M, Nogi T, Kato Y, Takagi J. PA tag: A versatile protein tagging system using a super high affinity antibody against a dodecapeptide derived from human podoplanin. Protein Expr Purif. 2014;95:240-247. doi:10.1016/j.pep.2014.01.009

69. Sangawa T, Tabata S, Suzuki K, Saheki Y, Tanaka K, Takagi J. METHODS AND APPLICATIONS A multipurpose fusion tag derived from an unstructured and hyperacidic region of the amyloid precursor protein. 2013. doi:10.1002/pro.2254

70. Hirata K, Yamashita K, Ueno G, et al. Zoo: An automatic data-collection system for high-throughput structure analysis in protein microcrystallography. Acta Crystallogr Sect D Struct Biol. 2019;75:138-150. doi:10.1107/S2059798318017795

71. Yamashita K, Hirata K, Yamamoto M. KAMO : towards automated data processing for microcrystals research papers. 2018:441-449. doi:10.1107/S2059798318004576

72. Kabsch W. Xds. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 2):125-132. doi:10.1107/S0907444909047337

73. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40(4):658-674. doi:10.1107/S0021889807021206

74. Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr Sect D Biol Crystallogr. 2004;60(12 I):2126-2132. doi:10.1107/S0907444904019158

75. Adams PD, Grosse-Kunstleve RW, Hung LW, et al. PHENIX: Building new software for automated crystallographic structure determination. Acta Crystallogr Sect D Biol Crystallogr. 2002;58(11):1948-1954. doi:10.1107/S0907444902016657

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る