リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of FRET‑based indicators for visualizing homophilic trans interaction of a clustered protocadherin」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of FRET‑based indicators for visualizing homophilic trans interaction of a clustered protocadherin

星野, 七海 大阪大学 DOI:10.18910/88168

2022.03.24

概要

Clustered protocadherins (Pcdhs), which are cell adhesion molecules, play a fundamental role in self- recognition and non-self-discrimination by conferring diversity to the cell surface. Although systematic cell-based aggregation assays provide information regarding the binding properties of Pcdhs, the direct visualization of homophilic Pcdh trans interactions across cells remains challenging. Here, I present Förster resonance energy transfer (FRET)-based indicators for the direct visualization of homophilic Pcdh trans interactions. I developed the indicators by individually inserting FRET donor and acceptor fluorescent proteins (FPs) into the ectodomain of Pcdh molecules. This process enabled the successful visualization of specific homophilic Pcdh trans interactions and revealed that the homophilic Pcdh trans interaction is highly sensitive to changes in extracellular Ca2+ levels.

The developed FRET indicators did not exhibit any FRET signals at the contact sites when the acceptor and donor indicators were coexpressed in the cells. To enable the FRET-based visualization of the homophilic Pcdh trans interaction in self-neurites, I fused two FPs into a single Pcdh molecule, which means that the two indicators are united into a single indicator in which the donor and acceptor proteins are combinatorially fused. This “combined” FRET indicator successfully showed FRET signals at the cell–cell contact sites, but no FRET signals were revealed in the intracellular spaces.

Although two FPs were fused in the extracellular (EC) domains of Pcdh, cell aggregation assays and immunoprecipitation revealed that the FP-fused Pcdh exhibited normal binding affinity to other proteins that have been reported to interact with the EC domains of Pcdhs.

Furthermore, I constructed a transgenic mouse that expressed the combined FRET indicator in a Cre-dependent manner. In this mouse, I revealed that a single isoform of Pcdhγ can rescue the self-crossing phenotype in the dendrites of Purkinje cells with Pcdhγ deletion.

I expect that FRET-based indicators for visualizing homophilic Pcdh trans interactions will provide a new approach for investigating the roles of Pcdh in self-recognition and non-self- discrimination processes, including the regulation of synaptic specificity.

In this thesis, I explain why I developed an indicator of the homophilic trans interaction of Pcdh. Then, the results of the separated FRET indicators and those of a combined FRET indicator are presented. The results of the separated FRET indicators are from a previous study, of which I was a co-first author (Kanadome et al., 2021). Finally, I discuss the usage of these indicators, including the advantages and disadvantages of the two concepts.

この論文で使われている画像

参考文献

Chen, W. V., Nwakeze, C. L., Denny, C. A., O’Keeffe, S., Rieger, M. A., Mountoufaris, G., Kirner, A., Dougherty, J. D., Hen, R., Wu, Q., & Maniatis, T. (2017). Pcdhαc2 is required for axonal tiling and assembly of serotonergic circuitries in mice. Science, 356(6336), 406–411. https://doi.org/10.1126/science.aal3231

Cranfill, P. J., Sell, B. R., Baird, M. A., Allen, J. R., Lavagnino, Z., De Gruiter, H. M., Kremers, G. J., Davidson, M. W., Ustione, A., & Piston, D. W. (2016). Quantitative assessment of fluorescent proteins. Nature Methods, 13(7), 557–562. https://doi.org/10.1038/nmeth.3891

Esumi, S., Kakazu, N., Taguchi, Y., Hirayama, T., Sasaki, A., Hirabayashi, T., Koide, T., Kitsukawa, T., Hamada, S., & Yagi, T. (2005). Monoallelic yet combinatorial expression of variable exons of the protocadherin-α gene cluster in single neurons. Nature Genetics, 37(2), 171–176. https://doi.org/10.1038/ng1500

Fernández-Monreal, M., Kang, S., & Phillips, G. R. (2009). Gamma-protocadherin homophilic interaction and intracellular trafficking is controlled by the cytoplasmic domain in neurons. Molecular and Cellular Neuroscience, 40(3), 344–353. https://doi.org/10.1016/j.mcn.2008.12.002

Garrett, A. M., Schreiner, D., Lobas, M. A., & Weiner, J. A. (2012). g -Protocadherins Control Cortical Dendrite Arborization by Regulating the Activity of a FAK / PKC / MARCKS Signaling Pathway. Neuron, 74(2), 269–276. https://doi.org/10.1016/j.neuron.2012.01.028

Goodman, Kerry M., Rubinstein, R., Dan, H., Bahna, F., Mannepalli, S., Ahlsén, G., Thu, C. A., Sampogna, R. V., Maniatis, T., Honig, B., & Shapiro, L. (2017). Protocadherin cis-dimer architecture and recognition unit diversity. Proceedings of the National Academy of Sciences of the United States of America, 114(46), E9829–E9837. https://doi.org/10.1073/pnas.1713449114

Goodman, Kerry Marie, Rubinstein, R., Thu, C. A., Bahna, F., Mannepalli, S., Ahlsén, G., Rittenhouse, C., Maniatis, T., Honig, B., & Shapiro, L. (2016). Structural Basis of Diverse Homophilic Recognition by Clustered α- and β-Protocadherins. Neuron, 90(4), 709–723. https://doi.org/10.1016/j.neuron.2016.04.004

Goodman, Kerry Marie, Rubinstein, R., Thu, C. A., Mannepalli, S., Bahna, F., Ahlsén, G., Rittenhouse, C., Maniatis, T., Honig, B., & Shapiro, L. (2016). γ-Protocadherin structural diversity and functional implications. ELife, 5, 1–25. https://doi.org/10.7554/elife.20930

Gordon, G. W., Berry, G., Liang, X. H., Levine, B., & Herman, B. (1998). Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophysical Journal, 74(5), 2702–2713. https://doi.org/10.1016/S0006-3495(98)77976-7

Greenwald, E. C., Mehta, S., & Zhang, J. (2018). Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chemical Reviews, 118(24), 11707–11794. https://doi.org/10.1021/acs.chemrev.8b00333

Hasegawa, S., Hamada, S., Kumode, Y., Esumi, S., Katori, S., Fukuda, E., Uchiyama, Y., Hirabayashi,T., Mombaerts, P., & Yagi, T. (2008). The protocadherin-α family is involved in axonal coalescence of olfactory sensory neurons into glomeruli of the olfactory bulb in mouse. Molecular and Cellular Neuroscience, 38(1), 66–79. https://doi.org/10.1016/j.mcn.2008.01.016

Hasegawa, S., Kobayashi, H., Kumagai, M., Nishimaru, H., Tarusawa, E., Kanda, H., Sanbo, M., Yoshimura, Y., Hirabayashi, M., Hirabayashi, T., & Yagi, T. (2017). Clustered Protocadherins Are Required for Building Functional Neural Circuits. Frontiers in Molecular Neuroscience, 10(April). https://doi.org/10.3389/fnmol.2017.00114

Hasegawa, S., Kumagai, M., Hagihara, M., Nishimaru, H., Hirano, K., Kaneko, R., Okayama, A., Hirayama, T., Sanbo, M., Hirabayashi, M., Watanabe, M., Hirabayashi, T., & Yagi, T. (2016). Distinct and Cooperative Functions for the Protocadherin-α, -β and -γ Clusters in Neuronal Survival and Axon Targeting. Frontiers in Molecular Neuroscience, 9(December), 1–21. https://doi.org/10.3389/fnmol.2016.00155

Hattori, D., Millard, S. S., Wojtowicz, W. M., & Zipursky, S. L. (2008). Dscam-mediated cell recognition regulates neural circuit formation. Annual Review of Cell and Developmental Biology, 24, 597–620. https://doi.org/10.1146/annurev.cellbio.24.110707.175250

Hirano, K., Kaneko, R., Izawa, T., Kawaguchi, M., Kitsukawa, T., & Yagi, T. (2012). Single-neuron diversity generated by Protocadherin-β cluster in mouse central and peripheral nervous systems. Frontiers in Molecular Neuroscience, 5(August), 1–13. https://doi.org/10.3389/fnmol.2012.00090

Ing-esteves, S., Kostadinov, X. D., Marocha, J., Sing, X. A. D., Joseph, X. K. S., Laboulaye, M. A., Sanes, X. J. R., & Lefebvre, X. J. L. (2018). Combinatorial Effects of Alpha- and Gamma- Protocadherins on Neuronal Survival and Dendritic Self-Avoidance. The Journal of Neuroscience, 38(11), 2713–2729. https://doi.org/10.1523/JNEUROSCI.3035-17.2018

Jin, Y., & Li, H. (2019). Revisiting Dscam diversity: lessons from clustered protocadherins. Cellular and Molecular Life Sciences, 76(4), 667–680. https://doi.org/10.1007/s00018-018-2951-4

Kanadome, T., Hoshino, N., Nagai, T., Matsuda, T., & Yagi, T. (2021). Development of FRET-based indicators for visualizing homophilic trans interaction of a clustered protocadherin. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-01481-2

Kaneko, R., Kato, H., Kawamura, Y., Esumi, S., Hirayama, T., Hirabayashi, T., & Yagi, T. (2006). Allelic gene regulation of Pcdh-α and Pcdh-γ clusters involving both monoallelic and biallelic expression in single Purkinje cells. Journal of Biological Chemistry, 281(41), 30551–30560. https://doi.org/10.1074/jbc.M605677200

Katori, S., Hamada, S., Noguchi, Y., Fukuda, E., Yamamoto, T., Yamamoto, H., Hasegawa, S., & Yagi,T. (2009). Protocadherin-α family is required for serotonergic projections to appropriately innervate target brain areas. Journal of Neuroscience, 29(29), 9137–9147. https://doi.org/10.1523/JNEUROSCI.5478-08.2009

Katori, S., Noguch, Y., Okayama, A., & Kawamura, Y. (2017). Protocadherin-αC2 is required for diffuse projections of serotonergic axons. Scientific Reports, June 2016, 1–14. https://doi.org/10.1038/s41598-017-16120-y

Kim, S. A., Tai, C., Mok, L., Mosser, E. A., & Schuman, E. M. (2011). Calcium-dependent dynamics of cadherin interactions at cell – cell junctions. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1019003108

Kohmura, N., Senzaki, K., Hamada, S., Kai, N., Yasuda, R., Watanabe, M., Ishii, H., Yasuda, M., Mishina, M., & Yagi, T. (1998). Diversity Revealed by a Novel Family of Cadherins Expressed in Neurons at a Synaptic Complex. Neuron, 20, 1137–1151. https://ac.els-cdn.com/S089662730080495X/1-s2.0-S089662730080495X-main.pdf?_tid=10f906be-e0f2-4188-a01a-cd6f11f67709&acdnat=1543850768_9f56ef740f28573aad8668f5abd3d55c

Konno, A., & Hirai, H. (2020). Efficient whole brain transduction by systemic infusion of minimally purified AAV-PHP.eB. Journal of Neuroscience Methods, 346(April). https://doi.org/10.1016/j.jneumeth.2020.108914

Kostadinov, D., & Sanes, J. R. (2015). Protocadherin-dependent dendritic selfavoidance regulates neural connectivity and circuit function. ELife, 4(JULY2015), 1–23. https://doi.org/10.7554/eLife.08964

Lefebvre, J. L., Kostadinov, D., Chen, W. V, Maniatis, T., & Sanes, J. R. (2012). Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature, 488(7412), 517–521. https://doi.org/10.1038/nature11305

Molumby, M. J., Anderson, R. M., Newbold, D. J., Schreiner, D., Radley, J. J., Weiner, J. A., Molumby,

M. J., Anderson, R. M., Newbold, D. J., Koblesky, N. K., Garrett, A. M., Schreiner, D., Radley, J. J., & Weiner, J. A. (2017). g -Protocadherins Interact with Neuroligin-1 and Negatively Regulate Dendritic Spine Morphogenesis Article g -Protocadherins Interact with Neuroligin-1 and Negatively Regulate Dendritic Spine Morphogenesis. Cell Reports, 18(11), 2702–2714. https://doi.org/10.1016/j.celrep.2017.02.060

Molumby, M. J., Keeler, A. B., & Weiner, J. A. (2016). Homophilic Protocadherin Cell-Cell Interactions Article Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity. Cell Reports, 15(5), 1037–1050. https://doi.org/10.1016/j.celrep.2016.03.093

Mountoufaris, G., Chen, W. V, Hirabayashi, Y., Keeffe, S. O., Chevee, M., & Nwakeze, C. L. (2017).

Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. Science, 356(6336), 411–414. https://doi.org/10.1126/science.aai8801

Murata, Y., Hamada, S., Morishita, H., Mutoh, T., & Yagi, T. (2004). Interaction with protocadherin-γ regulates the cell surface expression of protocadherin-α. Journal of Biological Chemistry, 279(47), 49508–49516. https://doi.org/10.1074/jbc.M408771200

Ozawa, M., & Kemler, R. (1998). Altered cell adhesion activity by pervanadate due to the dissociation of α-catenin from the E-cadherin·catenin complex. Journal of Biological Chemistry, 273(11), 6166– 6170. https://doi.org/10.1074/jbc.273.11.6166

Pancho, A., Aerts, T., Mitsogiannis, M. D., & Seuntjens, E. (2020). Protocadherins at the Crossroad of Signaling Pathways. Frontiers in Molecular Neuroscience, 13(June), 1–28. https://doi.org/10.3389/fnmol.2020.00117

Reiss, K., Maretzky, T., Haas, I. G., Schulte, M., Ludwig, A., Frank, M., & Saftig, P. (2006). Regulated ADAM10-dependent ectodomain shedding of γ-protocadherin C3 modulates cell-cell adhesion. Journal of Biological Chemistry, 281(31), 21735–21744. https://doi.org/10.1074/jbc.M602663200

Rubinstein, R., Goodman, K. M., Maniatis, T., Shapiro, L., & Honig, B. (2017). Structural origins of clustered protocadherin-mediated neuronal barcoding. Seminars in Cell and Developmental Biology, 69, 140–150. https://doi.org/10.1016/j.semcdb.2017.07.023

Rubinstein, R., Thu, C. A., Goodman, M., Maniatis, T., Shapiro, L., Honig, B., Rubinstein, R., Thu, C. A., Goodman, K. M., Wolcott, H. N., & Bahna, F. (2015). Molecular Logic of Neuronal Self- Recognition through Protocadherin Domain Interactions. Cell, 163(3), 629–642. https://doi.org/10.1016/j.cell.2015.09.026

Schreiner, D., & Weiner, J. A. (2010). Combinatorial homophilic interaction between -protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proceedings of the National Academy of Sciences, 107(33), 14893–14898. https://doi.org/10.1073/pnas.1004526107

Steffen, D. M., Ferri, S. L., Marcucci, C. G., Blocklinger, K. L., Molumby, M. J., Abel, T., & Weiner, J.A. (2021). The γ-Protocadherins Interact Physically and Functionally with Neuroligin-2 to Negatively Regulate Inhibitory Synapse Density and Are Required for Normal Social Interaction. Molecular Neurobiology. https://doi.org/10.1007/s12035-020-02263-z

Stryer, L., & Haugland, R. (1967). Energy transfer: a spectroscopic ruler. Proceedings of the National Academy of Sciences of the United States of America, 58(2), 719–726. https://doi.org/10.1073/pnas.58.2.719

Suo, L., Lu, H., Ying, G., Capecchi, M. R., & Wu, Q. (2012). Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase. Journal of Molecular Cell Biology, 4(6), 362–376. https://doi.org/10.1093/jmcb/mjs034

Tarusawa, E., Sanbo, M., Okayama, A., Miyashita, T., Kitsukawa, T., Hirayama, T., Hirabayashi, T., Hasegawa, S., Kaneko, R., Toyoda, S., Kobayashi, T., Kato-Itoh, M., Nakauchi, H., Hirabayashi, M., Yagi, T., & Yoshimura, Y. (2016). Establishment of high reciprocal connectivity between clonal cortical neurons is regulated by the Dnmt3b DNA methyltransferase and clustered protocadherins. BMC Biology, 14(1), 1–19. https://doi.org/10.1186/s12915-016-0326-6

Thu, C. A., Chen, W. V., Rubinstein, R., Chevee, M., Wolcott, H. N., Felsovalyi, K. O., Tapia, J. C., Shapiro, L., Honig, B., & Maniatis, T. (2014). Single-cell identity generated by combinatorial homophilic interactions between α, β, and γ protocadherins. Cell, 158(5), 1045–1059. https://doi.org/10.1016/j.cell.2014.07.012

Wang, X., Weiner, J. A., Levi, S., Craig, A. M., Bradley, A., & Sanes, J. R. (2002). Gamma protocadherins are required for survival of spinal interneurons. Neuron, 36(5), 843–854. https://doi.org/10.1016/S0896-6273(02)01090-5

Wu, Q., & Maniatis, T. (1999). A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell, 97(6), 779–790. https://doi.org/10.1016/S0092-8674(00)80789-8

Wu, Qiang, & Jia, Z. (2021). Wiring the Brain by Clustered Protocadherin Neural Codes. Neuroscience Bulletin, 37(1), 117–131. https://doi.org/10.1007/s12264-020-00578-4

Zhang, B., & Südhof, T. C. (2016). Neuroligins are selectively essential for NMDAR signaling in cerebellar stellate interneurons. Journal of Neuroscience, 36(35), 9070–9083. https://doi.org/10.1523/JNEUROSCI.1356-16.2016

Zipursky, S. L., & Sanes, J. R. (2010). Chemoaffinity revisited: Dscams, protocadherins, and neural circuit assembly. Cell, 143(3), 343–353. https://doi.org/10.1016/j.cell.2010.10.009

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る