リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Accelerator based epithermal neutron source for clinical boron neutron capture therapy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Accelerator based epithermal neutron source for clinical boron neutron capture therapy

Hu, Naonori Tanaka, Hiroki Akita, Kazuhiko Kakino, Ryo Aihara, Teruhito Nihei, Keiji Ono, Koji 京都大学 DOI:10.3233/jnr-220037

2023.01.18

概要

The world’s first accelerator based epithermal neutron source for clinical boron neutron capture therapy (BNCT) was designed, developed, and commissioned between 2008 and 2010 by Sumitomo Heavy Industries in collaboration with Kyoto University at the Kyoto University Institute for Integrated Radiation and Nuclear Science. The accelerator system is cyclotron-based and accelerates a proton up to an energy of approximately 30 MeV. The proton strikes a beryllium target, which produces fast neutrons that traverse a beam shaping assembly composed of a combination of lead, iron, aluminum, and calcium fluoride to reduce the neutron energy down to the epithermal range (∼10 keV) suitable for BNCT. The system is designed to produce an epithermal neutron flux of up to 1.4 × 10 9 n · cm − 2 · s − 1 (exiting from the moderator of a 12 cm diameter collimator) with a proton current of 1 mA. In 2017, the same type of accelerator was installed at the Kansai BNCT Medical Center and in March 2020 the system received medical device approval in Japan (Sumitomo Heavy Industries, NeuCure® BNCT system). Soon after, BNCT for unresectable, locally advanced, and recurrent carcinoma of the head and neck region was approved by the Japanese government for reimbursement covered by the national health insurance system.

この論文で使われている画像

参考文献

39

[1] J.A. Coderre et al., Derivations of relative biological effectiveness for the high-let radiations produced during boron neutron capture

irradiations of the 9l rat gliosarcoma in vitro and in vivo, Int. J. Radiat. Oncol. Biol. Phys. 27(5) (1993), 1121–1129. doi:10.1016/03603016(93)90533-2.

[2] J.A. Coderre et al., Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: Boron concentration correlates with

tumor cellularity, Radiat. Res. 149(2) (1998), 163–170, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/9457896. doi:10.2307/

3579926.

[3] J.A. Coderre, G.M. Morris, P.L. Micca, C.D. Fisher and G.A. Ross, Comparative assessment of single-dose and fractionated boron neutron

capture therapy, Radiat. Res. 144(3) (1995), 310–317, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/7494875. doi:10.2307/

3578951.

[4] H. Fukuda et al., Boron neutron capture therapy (BNCT) for malignant melanoma with special reference to absorbed doses to the normal

skin and tumor, Australas. Phys. Eng. Sci. Med. 26(3) (2003), 97–103. doi:10.1007/BF03178777.

38

37

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

[research-article]

10

11

12

13

14

15

16

17

18

19

[5] N. Hu et al., Evaluation of a treatment planning system developed for clinical boron neutron capture therapy and validation against an

independent Monte Carlo dose calculation system, Radiat. Oncol. 16(1) (2021), 1–13. doi:10.1186/s13014-021-01968-2.

[6] International Atomic Energy Agency, Current Status of Neutron Capture Therapy, no. 1223. Vienna: IAEA-TECDOC-1223, 2001.

[7] S. Jednoróg, M. Scholz, M. Paduch, B. Bienkowska and A. Szydłowski, Preliminary determination of angular distribution of neutrons

emitted from PF-1000 facility by indium activation, Nukleonika 57(4) (2012), 563–568.

[8] S. Kawabata et al., Accelerator-based BNCT for patients with recurrent glioblastoma: A multicenter phase II study, Neuro-Oncology Adv.

3(1) (2021), 1–9. doi:10.1093/noajnl/vdab067.

[9] Y. Kiyanagi, Y. Sakurai, H. Kumada and H. Tanaka, Status of accelerator-based BNCT projects worldwide, AIP Conf. Proc. 2160 (2019).

doi:10.1063/1.5127704.

[10] A.J. Kreiner et al., Present status of accelerator-based BNCT, Reports Pract. Oncol. Radiother. 21(2) (2016), 95–101. doi:10.1016/j.rpor.

2014.11.004.

[11] T. Mitsumoto et al., Cyclotron-based neutron source for BNCT, AIP Conf. Proc. 1525 (2013), 319–322. doi:10.1063/1.4802341.

[12] T.L. Nichols, L.F. Miller and G.W. Kabalka, The microdosimetry of boron neutron capture therapy in a randomised ellipsoidal cell

geometry, Radiat. Prot. Dosimetry 116(1–4) (2005), 466–469. doi:10.1093/rpd/nci248.

[13] Y. Sakurai and T. Kobayashi, Characteristics of the KUR heavy water neutron irradiation facility as a neutron irradiation field with variable

energy spectra, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 453(3) (2000), 569–596. doi:10.

1016/S0168-9002(00)00465-4.

[14] T. Sato et al., Features of particle and heavy ion transport code system (PHITS) version 3.02, J. Nucl. Sci. Technol. 55(6) (2018), 684–690.

doi:10.1080/00223131.2017.1419890.

[15] H. Tanaka et al., Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS), Appl. Radiat.

Isot. 69(12) (2011), 1642–1645. doi:10.1016/j.apradiso.2011.03.020.

[16] J.C. Yanch, X.-L. Zhou and G.L. Brownell, A Monte Carlo investigation of the dosimetric properties of monoenergetic neutron beams for

neutron capture therapy, Radiat. Res. 126(1) (1991), 1–20. doi:10.2307/3578165.

N. Hu et al. / Accelerator based epithermal neutron source for clinical boron neutron capture therapy

PR

p. 8/8

20

10

11

12

13

14

15

16

17

18

19

20

21

22

22

21

23

TE

24

25

26

EC

27

28

29

30

31

32

33

34

35

36

40

41

42

43

44

39

38

37

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

45

46

46

47

47

48

48

49

49

50

50

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る