リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「遺伝子制御ネットワーク推定を用いたPv11細胞における乾燥耐性制御機構に関する研究 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

遺伝子制御ネットワーク推定を用いたPv11細胞における乾燥耐性制御機構に関する研究 (本文)

山田, 貴大 慶應義塾大学

2020.09.21

概要

生物はその生命活動に水を必須な物質として要求し,この水が失われる乾燥ストレスは多くの生物にとって致死的な要因の一つとなる.特に,陸生の生物は乾燥ストレスに常に晒されることから,これによる死を回避するためにその多くが進化の過程で乾燥ストレスを寛容化する分子機構を獲得してきた.特にこの分子機構の一つである無代謝状態(Anhydrobiosis)への移行は,99%以上の生体内の水を失ったとしても水を再度与えることで元の生活環に戻る機構である[1].これまでにワムシ(rotifers),クマムシ(tardigrades),線虫(nematodes)や植物, そしてネムリュスリカ(Polypedilum vanderplanki)の幼虫など様々な生物がこの機構を持つことで乾燥ストレスによる死を寛容化することが知られている[2-6].さらに2010年に樹立されたネムリュスリカの胚由来培養細胞であるPv11細胞は事前に高濃度のトレハロースを含む培地で処理するトレハロース処理により,乾燥ストレスに晒されても水を与えることで細胞分裂を再開することが確認され,このことから乾燥耐性が細胞単位で達成される仕組みであることが示された[7]. —方で,この Pv11細胞の乾燥耐性機構について分子レベルで解明した研究事例はなく,本機構は未知であった. 本研究では, Pv11細胞における乾燥耐性機構の解明を目指し,本機構を構成する遺伝子群およびそれらを制御する遺伝子制御ネットワークの推定を行なった.

第1章は緒言で,乾燥耐性を有する生物に関してこれまでに報告されてきた分子生物学的な知見について包括的に紹介する.そして,乾燥耐性機構解明に有用な遺伝子制御ネットワーク推定方法を概説し,次いで本研究の目的について述べる.

第2 章では, トレハロース処理, 乾燥, 再水和時におけるPv11細胞の時系列CAGE-seqデータから,Pv11細胞の乾燥耐性に関わる遺伝子群の推定に関して述べる.これらの遺伝子群の機能に基づきPv11細胞特有の乾燥耐性機構に関して得られた知見を報告する.

第3章では,第2章で得られた遺伝子群を含めてこれまでに報告されてきた乾燥耐性関連遺伝子群の発現を制御する遺伝子制御ネットワークの推定に関して述べる.推定した遺伝子制御ネットワークに基づき,Pv11細胞の乾燥耐性関連遺伝子群の主要な制御を担う可能性のある転写因子やこれら遺伝子群の発現のON/OFFを調節する可能性のある制御構造について報告する.

第4章では,明らかになった遺伝子制御ネットワークから考えられるPv11細胞の乾燥耐性機構に関してまとめ,この推定した乾燥耐性機構の検証方法,そして乾燥耐性機構の制御による別生物種への乾燥耐性付与に関する今後の展望について議論する.

この論文で使われている画像

参考文献

[1] John H Crowe, Folkert A Hoekstra, and Lois M Crowe. Anhydrobiosis. Annu. Rev. Physiol., Vol. 54, No. 1, pp. 579–599, 1992.

[2] Jens Lapinski and Alan Tunnacliffe. Anhydrobiosis without trehalose in bdelloid rotifers. FEBS Lett., Vol. 553, No. 3, pp. 387–390, 2003.

[3] Weronika We-lnicz, Markus A Grohme, L- ukasz Kaczmarek, Ralph O Schill, and Marcus Frohme. Anhydrobiosis in tardigrades—the last decade. J. Insect Physiol., Vol. 57, No. 5, pp. 577–583, 2011.

[4] Robert McSorley. Adaptations of nematodes to environmental extremes. Fla. Entomol., Vol. 86, No. 2, pp. 138–143, 2003.

[5] Folkert A Hoekstra, Elena A Golovina, and Julia Buitink. Mechanisms of plant desiccation tolerance. Trends Plant Sci., Vol. 6, No. 9, pp. 431–438, 2001.

[6] Takahiro Kikawada, Noboru Minakawa, Masahiko Watanabe, and Takashi Okuda. Factors inducing successful anhydrobiosis in the African chironomid Polypedilum vanderplanki: significance of the larval tubular nest. Integr. Comp. Biol., Vol. 45, No. 5, pp. 710–714, 2005.

[7] Yuichi Nakahara, Shigeo Imanishi, Kanako Mitsumasu, Yasushi Kanamori, Ken-ichi Iwata, Masahiko Watanabe, Takahiro Kikawada, and Takashi Okuda. Cells from an anhydrobiotic chironomid survive almost complete desiccation. Cryobiology, Vol. 60, No. 2, pp. 138–146, 2010.

[8] Van Leeuwenhoek, A. (1702) Letter to Hendrik van Bleyswijk dated 9 Febu- rary 1702 (in Italian).

[9] クリフォードドーベル. レーベンフックの手紙, p. 263. 九州大学出版会, 12 2003.

[10] Masahiko Watanabe. Anhydrobiosis in invertebrates. Appl. Entomol. Zool., Vol. 41, No. 1, pp. 15–31, 2006.

[11] D Keilin. The problem of anabiosis or latent life: history and current concept. the Leeuwenhoek lecture. Proc R Soc Lond B, Vol. 150, No. 939, pp. 148–191, 1959.

[12] John H Crowe. Evaporative water loss by tardigrades under controlled rel- ative humidities. Biol. Bull., Vol. 142, No. 3, pp. 407–416, 1972.

[13] Paul H Yancey, Mary E Clark, Steven C Hand, R David Bowlus, and George N Somero. Living with water stress: evolution of osmolyte systems. Science, Vol. 217, No. 4566, pp. 1214–1222, 1982.

[14] John H Crowe, James S Clegg, and Lois M Crowe. Anhydrobiosis: the water replacement hypothesis, pp. 440–455. Springer, 1998.

[15] Roberto Bertolani, Roberto Guidetti, Ingemar K J¨onsson, Tiziana Altiero, Deborah Boschini, and Lorena Rebecchi. Experiences with dormancy in tardigrades. J Limnol, Vol. 63, No. 1s, pp. 16–25, 2004.

[16] Selvan Bavan, Volko A Straub, Mark L Blaxter, and Steven J Ennion. A P2X receptor from the tardigrade species Hypsibius dujardini with fast kinetics and sensitivity to zinc and copper. BMC Evol. Biol., Vol. 9, No. 17, 2009.

[17] Lois M Crowe, John H Crowe, Alan Rudolph, Christopher Womersley, and Lori Appel. Preservation of freeze-dried liposomes by trehalose. Arch. Biochem. Biophys, Vol. 242, No. 1, pp. 240–247, 1985.

[18] Kazuyo Watanabe, Shigeo Imanishi, Gaku Akiduki, Richard Cornette, and Takashi Okuda. Air-dried cells from the anhydrobiotic insect, Polypedilum vanderplanki, can survive long term preservation at room temperature and retain proliferation potential after rehydration. Cryobiology, Vol. 73, No. 1, pp. 93–98, 2016.

[19] Oleg Gusev, Yoshitaka Suetsugu, Richard Cornette, Takeshi Kawashima, Maria D Logacheva, Alexey S Kondrashov, Aleksey A Penin, Rie Hatanaka, Shingo Kikuta, Sachiko Shimura, et al. Comparative genome sequencing re- veals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nat Commun, Vol. 5, No. 4784, 2014.

[20] Richard Cornette, Oleg Gusev, and Takahiro Kikawada. New insights about anhydrobiosis in Polypedilum vanderplanki (Diptera, chironomidae) from metabolome analysis. Cryobiology, Vol. 85, No. 137, 2018.

[21] Elham Schokraie, Uwe Warnken, Agnes Hotz-Wagenblatt, Markus A Grohme, Steffen Hengherr, Frank F¨orster, Ralph O Schill, Marcus Frohme, Thomas Dandekar, and Martina Schno¨lzer. Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state. PLOS ONE, Vol. 7, No. 9, p. e45682, 2012.

[22] Zebo Huang, Matthew C Banton, and Alan Tunnacliffe. Modeling anhydro- biosis: activation of the mitogen-activated protein kinase ERK by dehydra- tion in both human cells and nematodes. J Exp Zool A Ecol Genet Physiol, Vol. 313, No. 10, pp. 660–670, 2010.

[23] Koyuki Kondo, Masaru Mori, Masaru Tomita, and Kazuharu Arakawa. AMPK activity is required for the induction of anhydrobiosis in a tardi- grade Hypsibius exemplaris, and its potential up-regulator is PP2A. Genes to Cells, Vol. 24, No. 12, pp. 768–780, 2019.

[24] Xiangyu Zhou, Isao Naguro, Hidenori Ichijo, and Kengo Watanabe. Mitogen- activated protein kinases as key players in osmotic stress signaling. Biochim Biophys Acta Gen Subj, Vol. 1860, No. 9, pp. 2037–2052, 2016.

[25] Cihan Erkut, Andrej Vasilj, Sebastian Boland, Bianca Habermann, An- drej Shevchenko, and Teymuras V Kurzchalia. Molecular strategies of the Caenorhabditis elegans dauer larva to survive extreme desiccation. PLOS ONE, Vol. 8, No. 12, p. e82473, 2013.

[26] Lei Zhang, Akinori Ohta, Masamichi Takagi, and Ryozo Imai. Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J. Biochem., Vol. 127, No. 4, pp. 611–616, 2000.

[27] Kshamata Goyal, Claudia Pinelli, Sarah L Maslen, Rakesh K Rastogi, Elaine Stephens, and Alan Tunnacliffe. Dehydration-regulated processing of late embryogenesis abundant protein in a desiccation-tolerant nematode. FEBS Lett., Vol. 579, No. 19, pp. 4093–4098, 2005.

[28] Jose L Soulages, Kangmin Kim, Christina Walters, and John C Cushman. Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Plant Physiology, Vol. 128, No. 3, pp. 822–832, 2002.

[29] Rie Hatanaka, Yuka Hagiwara-Komoda, Takao Furuki, Yasushi Kanamori, Mika Fujita, Richard Cornette, Minoru Sakurai, Takashi Okuda, and Takahiro Kikawada. An abundant LEA protein in the anhydrobiotic midge, PvLEA4, acts as a molecular shield by limiting growth of aggregating pro- tein particles. Insect Biochem. Mol. Biol., Vol. 43, No. 11, pp. 1055–1067, 2013.

[30] Yuki Yoshida, Georgios Koutsovoulos, Dominik R Laetsch, Lewis Stevens, Sujai Kumar, Daiki D Horikawa, Kyoko Ishino, Shiori Komine, Takekazu Kunieda, Masaru Tomita, et al. Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. PLoS Biol., Vol. 15, No. 7, p. e2002266, 2017.

[31] Fredrik ˚Aslund, Kurt D Berndt, and Arne Holmgren. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J. Biol. Chem., Vol. 272, No. 49, pp. 30780–30786, 1997.

[32] Wendell Q Sun and A Carl Leopold. Cytoplasmic vitrification and survival of anhydrobiotic organisms. Comp. Biochem. Physiol. A Physiol., Vol. 117, No. 3, pp. 327–333, 1997.

[33] Yoichiro Sogame and Takahiro Kikawada. Current findings on the molecular mechanisms underlying anhydrobiosis in Polypedilum vanderplanki. Curr Opin Insect Sci, Vol. 19, pp. 16–21, 2017.

[34] Shilpi Khare, Carole L Linster, and Steven G Clarke. The interplay between protein L-isoaspartyl methyltransferase activity and insulin-like signaling to extend lifespan in Caenorhabditis elegans. PLOS ONE, Vol. 6, No. 6, p. e20850, 2011.

[35] Thorsten Burmester and Thomas Hankeln. The respiratory proteins of in- sects. J. Insect Physiol., Vol. 53, No. 4, pp. 285–294, 2007.

[36] Shin G Goto, Richard E Lee Jr, and David L Denlinger. Aquaporins in the Antarctic midge, an extremophile that relies on dehydration for cold survival. Biol. Bull, Vol. 229, No. 1, pp. 47–57, 2015.

[37] Peter Agre and David Kozono. Aquaporin water channels: molecular mech- anisms for human diseases1. FEBS Lett., Vol. 555, No. 1, pp. 72–78, 2003.

[38] Oscar JM Goddijn and Kees van Dun. Trehalose metabolism in plants. Trends Plant Sci., Vol. 4, No. 8, pp. 315–319, 1999.

[39] Pavel V Mazin, Elena Shagimardanova, Olga Kozlova, Alexander Cherkasov, Roman Sutormin, Vita V Stepanova, Alexey Stupnikov, Maria Logacheva, Aleksey Penin, Yoichiro Sogame, et al. Cooption of heat shock regulatory system for anhydrobiosis in the sleeping chironomid Polypedilum vander- planki. Proc. Natl. Acad. Sci. USA, Vol. 115, No. 10, pp. E2477–E2486, 2018.

[40] Andras Orosz, Jan Wisniewski, and Carl Wu. Regulation of Drosophila heat shock factor trimerization: global sequence requirements and independence of nuclear localization. Vol. 16, No. 12, pp. 7018–7030, 1996.

[41] 堀川大樹. ヨコヅナクマムシ: 極限環境動物のモデルとして. 極限環境微生物学会誌, Vol. 7.2, No. 1, pp. 25–28, 2008.

[42] Christopher Womersley and Cherie Ching. Natural dehydration regimes as a prerequisite for the successful induction of anhydrobiosis in the nematode Rotylenchulus reniformis. J. Exp. Biol, Vol. 143, No. 1, pp. 359–372, 1989.

[43] Manuela Caprioli and Claudia Ricci. Recipes for successful anhydrobiosis in bdelloid rotifers. In Rotifera IX, pp. 13–17. Springer, 2001.

[44] Koyuki Kondo, Takeo Kubo, and Takekazu Kunieda. Suggested involvement of PP1/PP2A activity and de novo gene expression in anhydrobiotic survival in a tardigrade, Hypsibius dujardini, by chemical genetic approach. PLOS ONE, Vol. 10, No. 12, p. e0144803, 2015.

[45] Emanuel Gon¸calves, Joachim Bucher, Anke Ryll, Jens Niklas, Klaus Mauch, Steffen Klamt, Miguel Rocha, and Julio Saez-Rodriguez. Bridging the layers: towards integration of signal transduction, regulation and metabolism into mathematical models. Mol. Biosyst., Vol. 9, No. 7, pp. 1576–1583, 2013.

[46] Jason A Papin, Tony Hunter, Bernhard O Palsson, and Shankar Subrama- niam. Reconstruction of cellular signalling networks and analysis of their properties. Nat. Rev. Mol. Cell Biol., Vol. 6, pp. 99–111, 2005.

[47] Christine N Tennyson, Henry J Klamut, and Ronald G Worton. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat. Genet., Vol. 9, pp. 184–190, 1995.

[48] David A Wharton. 16. Nematode Survival Strategies. CRC Press, 2002.

[49] Leena J Thorat, Sushama M Gaikwad, and Bimalendu B Nath. Trehalose as an indicator of desiccation stress in Drosophila melanogaster larvae: a potential marker of anhydrobiosis. Biochem. Biophys. Res. Commun, Vol. 419, No. 4, pp. 638–642, 2012.

[50] Andreas PM Weber, Robin J Horst, Guillaume G Barbier, and Christine Oesterhelt. Metabolism and metabolomics of eukaryotes living under ex- treme conditions. Int. Rev. Cytol., Vol. 256, pp. 1–34, 2007.

[51] Dinakar Challabathula and Dorothea Bartels. Desiccation tolerance in resur- rection plants: new insights from transcriptome, proteome and metabolome analysis. Front. Plant Sci., Vol. 4, No. 482, 2013.

[52] Matthew C Banton and Alan Tunnacliffe. MAPK phosphorylation is im- plicated in the adaptation to desiccation stress in nematodes. J. Exp. Biol, Vol. 215, No. 24, pp. 4288–4298, 2012.

[53] Masahiko Watanabe, Yuichi Nakahara, Tetsuya Sakashita, Takahiro Kikawada, Akihiko Fujita, Nobuyuki Hamada, Daiki D Horikawa, Seiichi Wada, Yasuhiko Kobayashi, and Takashi Okuda. Physiological changes lead- ing to anhydrobiosis improve radiation tolerance in Polypedilum vanderplanki larvae. J. Insect Physiol., Vol. 53, No. 6, pp. 573–579, 2007.

[54] Mauro B Fran¸ca, Anita D Panek, and Elis CA Eleutherio. Oxidative stress and its effects during dehydration. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol., Vol. 146, No. 4, pp. 621–631, 2007.

[55] Daiki D Horikawa and Seigo Higashi. Desiccation tolerance of the tardigrade Milnesium tardigradum collected in Sapporo, Japan, and Bogor, Indonesia. Zool. Sci., Vol. 21, No. 8, pp. 813–817, 2004.

[56] Eric H Davidson. The regulatory genome: gene regulatory networks in de- velopment and evolution. Elsevier, 2010.

[57] Shubhada R Kulkarni, Dries Vaneechoutte, Jan Van de Velde, and Klaas Vandepoele. TF2Network: predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information. Nucleic Acids Res., Vol. 46, No. 6, pp. e31–e31, 2017.

[58] Shane Neph, Andrew B Stergachis, Alex Reynolds, Richard Sandstrom, El- hanan Borenstein, and John A Stamatoyannopoulos. Circuitry and dynamics of human transcription factor regulatory networks. Cell, Vol. 150, No. 6, pp. 1274–1286, 2012.

[59] Araceli M Huerta, Heladia Salgado, Denis Thieffry, and Julio Collado-Vides. RegulonDB: a database on transcriptional regulation in Escherichia coli. Nucleic Acids Res., Vol. 26, No. 1, pp. 55–59, 1998.

[60] Tong Ihn Lee, Nicola J Rinaldi, Franc¸ois Robert, Duncan T Odom, Ziv Bar-Joseph, Georg K Gerber, Nancy M Hannett, Christopher T Harbison, Craig M Thompson, Itamar Simon, et al. Transcriptional regulatory net- works in Saccharomyces cerevisiae. Science, Vol. 298, No. 5594, pp. 799–804, 2002.

[61] Sushmita Roy, Jason Ernst, Peter V Kharchenko, Pouya Kheradpour, Nico- las Negre, Matthew L Eaton, Jane M Landolin, Christopher A Bristow, Lijia Ma, Michael F Lin, et al. Identification of functional elements and regula- tory circuits by Drosophila modENCODE. Science, Vol. 330, No. 6012, pp. 1787–1797, 2010.

[62] Dijun Chen, Wenhao Yan, Liang-Yu Fu, and Kerstin Kaufmann. Architec- ture of gene regulatory networks controlling flower development in Arabidop- sis thaliana. Nat Commun, Vol. 9, No. 4534, 2018.

[63] Nor IA Rahman, Nor A Abdul Murad, Mohammad M Mollah, Rahman Jamal, and Roslan Harun. NFIX as a master regulator for lung cancer progression. Front Pharmacol, Vol. 8, No. 540, 2017.

[64] Nabil Guelzim, Samuele Bottani, Paul Bourgine, and Fran¸cois K´ep`es. Topo- logical and causal structure of the yeast transcriptional regulatory network. Nat. Genet., Vol. 31, pp. 60–63, 2002.

[65] Reka Albert. Scale-free networks in cell biology. J. Cell. Sci., Vol. 118, No. 21, pp. 4947–4957, 2005.

[66] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. Network motifs: simple building blocks of complex networks. Science, Vol. 298, No. 5594, pp. 824–827, 2002.

[67] Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet., Vol. 31, pp. 64–68, 2002.

[68] Jing Yu, V Anne Smith, Paul P Wang, Alexander J Hartemink, and Erich D Jarvis. Advances to Bayesian network inference for generating causal net- works from observational biological data. Bioinformatics, Vol. 20, No. 18, pp. 3594–3603, 2004.

[69] Pietro Zoppoli, Sandro Morganella, and Michele Ceccarelli. TimeDelay- ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics, Vol. 11, No. 154, 2010.

[70] Alexandre Irrthum, Louis Wehenkel, Pierre Geurts, et al. Inferring regula- tory networks from expression data using tree-based methods. PLOS ONE, Vol. 5, No. 9, p. e12776, 2010.

[71] Sungjoon Park, Jung Min Kim, Wonho Shin, Sung Won Han, Minji Jeon, Hyun Jin Jang, Ik-Soon Jang, and Jaewoo Kang. BTNET: boosted tree based gene regulatory network inference algorithm using time-course mea- surement data. BMC Syst. Biol., Vol. 12, No. 20, 2018.

[72] Anne-Claire Haury, Fantine Mordelet, Paola Vera-Licona, and Jean-Philippe Vert. TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol., Vol. 6, No. 145, 2012.

[73] Robert Ku¨ffner, Tobias Petri, Pegah Tavakkolkhah, Lukas Windhager, and Ralf Zimmer. Inferring gene regulatory networks by ANOVA. Bioinformat- ics, Vol. 28, No. 10, pp. 1376–1382, 2012.

[74] Vˆan Anh Huynh-Thu and Pierre Geurts. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data. Sci. Rep, Vol. 8, No. 1, p. 3384, 2018.

[75] Vˆan Anh Huynh-Thu and Guido Sanguinetti. Combining tree-based and dynamical systems for the inference of gene regulatory networks. Bioinfor- matics, Vol. 31, No. 10, pp. 1614–1622, 2015.

[76] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Ann. Stat., pp. 1189–1232, 2001.

[77] Clive WJ Granger. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, Vol. 37, No. 3, pp. 424–438, 1969.

[78] Peter J Park. ChIP–seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., Vol. 10, pp. 669–680, 2009.

[79] Rasika Mundade, Hatice Gulcin Ozer, Han Wei, Lakshmi Prabhu, and Tao Lu. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond. Cell Cycle, Vol. 13, No. 18, pp. 2847–2852, 2014.

[80] Alexander J. Stewart, Sridhar Hannenhalli, and Joshua B. Plotkin. Why Transcription factor binding sites are ten nucleotides long. Genetics, Vol. 192, No. 3, pp. 973–985, 2012.

[81] Philip Machanick and Timothy L. Bailey. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics, Vol. 27, No. 12, pp. 1696–1697, 2011.

[82] Aziz Khan, Oriol Fornes, Arnaud Stigliani, Marius Gheorghe, Jaime A Castro-Mondragon, Robin van der Lee, Adrien Bessy, Jeanne Cheneby, Shubhada R Kulkarni, Ge Tan, et al. JASPAR 2018: update of the open- access database of transcription factor binding profiles and its web frame- work. Nucleic Acids Res., Vol. 46, No. D1, pp. D260–D266, 2017.

[83] Lihua Julie Zhu, Ryan G Christensen, Majid Kazemian, Christopher J Hull, Metewo Selase Enuameh, Matthew D Basciotta, Jessie A Brasefield, Cong Zhu, Yuna Asriyan, David S Lapointe, et al. FlyFactorSurvey: a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system. Nucleic Acids Res., Vol. 39, pp. D111–D117, 2010.

[84] Matthew T Weirauch, Ally Yang, Mihai Albu, Atina G Cote, Alejandro Montenegro-Montero, Philipp Drewe, Hamed S Najafabadi, Samuel A Lam- bert, Ishminder Mann, Kate Cook, et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell, Vol. 158, No. 6, pp. 1431–1443, 2014.

[85] Robert C McLeay and Timothy L Bailey. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics, Vol. 11, No. 165, 2010.

[86] Martin C Frith, Yutao Fu, Liqun Yu, Jiang-Fan Chen, Ulla Hansen, and Zhiping Weng. Detection of functional DNA motifs via statistical over- representation. Nucleic Acids Res., Vol. 32, No. 4, pp. 1372–1381, 2004.

[87] Dimos Gaidatzis, Anita Lerch, Florian Hahne, and Michael B Stadler. QuasR: quantification and annotation of short reads in R. Bioinformatics, Vol. 31, No. 7, pp. 1130–1132, 2015.

[88] Jianqiang Sun, Tomoaki Nishiyama, Kentaro Shimizu, and Koji Kadota. TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics, Vol. 14, No. 219, 2013.

[89] Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edgeR: a bioconductor package for differential expression analysis of digital gene ex- pression data. Bioinformatics, Vol. 26, No. 1, pp. 139–140, 2010.

[90] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol., Vol. 57, No. 1, pp. 289–300, 1995.

[91] Koji Kadota, Tomoaki Nishiyama, and Kentaro Shimizu. A normalization strategy for comparing tag count data. Algorithms Mol Biol., Vol. 7, No. 5, 2012.

[92] Gregory R. Warnes, Ben Bolker, Lodewijk Bonebakker, Robert Gentleman, Wolfgang Huber Andy Liaw, Thomas Lumley, Martin Maechler, Arni Mag- nusson, Steffen Moeller, Marc Schwartz, and Bill Venables. gplots: Various R Programming Tools for Plotting Data, 2015. R package version 2.17.0.

[93] Ana Conesa, Stefan G¨otz, Juan Miguel Garc´ıa-G´omez, Javier Terol, Manuel Talo´n, and Montserrat Robles. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, Vol. 21, No. 18, pp. 3674–3676, 2005.

[94] Fran Supek, Matko Boˇsnjak, Nives Sˇkunca, and Tomislav Sˇmuc. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE., Vol. 6, No. 7, p. e21800, 2011.

[95] Andreas Schlicker, Francisco S Domingues, J¨org Rahnenfu¨hrer, and Thomas Lengauer. A new measure for functional similarity of gene products based on Gene Ontology. BMC Bioinformatics, Vol. 7, No. 302, 2006.

[96] Aron Marchler-Bauer, Shennan Lu, John B Anderson, Farideh Chitsaz, Myra K Derbyshire, Carol DeWeese-Scott, Jessica H Fong, Lewis Y Geer, Re- nata C Geer, Noreen R Gonzales, et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res., Vol. 39, pp. D225–D229, 2010.

[97] Guy Yachdav, Sebastian Wilzbach, Benedikt Rauscher, Robert Sheridan, Ian Sillitoe, James Procter, Suzanna E Lewis, Burkhard Rost, and Tatyana Goldberg. MSAViewer: interactive JavaScript visualization of multiple se- quence alignments. Bioinformatics, Vol. 32, No. 22, pp. 3501–3503, 2016.

[98] Takahiro G Yamada, Yoshitaka Suetsugu, Ruslan Deviatiiarov, Oleg Gusev, Richard Cornette, Alexander Nesmelov, Noriko Hiroi, Takahiro Kikawada, and Akira Funahashi. Transcriptome analysis of the anhydrobiotic cell line Pv11 infers the mechanism of desiccation tolerance and recovery. Sci Rep, Vol. 8, No. 17941, 2018.

[99] Thomas Schell, Andreas E Kulozik, and Matthias W Hentze. Integration of splicing, transport and translation to achieve mRNA quality control by the nonsense-mediated decay pathway. Genome Biol., Vol. 3, No. 3, pp. reviews1006.1–reviews1006.6, 2002.

[100] Yusong Yang, Ji-Zhong Cheng, Sharad S Singhal, Manjit Saini, Utpal Pandya, Sanjay Awasthi, and Yogesh C Awasthi. Role of glutathione S-transferases in protection against lipid peroxidation overexpression of HGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apop- tosis and inhibits JNK and caspase 3 activation. J. Biol. Chem., Vol. 276, No. 22, pp. 19220–19230, 2001.

[101] Motoaki Seki, Mari Narusaka, Junko Ishida, Tokihiko Nanjo, Miki Fujita, Youko Oono, Asako Kamiya, Maiko Nakajima, Akiko Enju, Tetsuya Sakurai, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J., Vol. 31, No. 3, pp. 279–292, 2002.

[102] B Burchell, CH Brierley, G Monaghan, and DJ Clarke. The structure and function of the UDP-glucuronosyltransferase gene family. In Adv Pharmacol., Vol. 42, pp. 335–338. Elsevier, 1997.

[103] Kenneth Bachmann. Drug metabolism. Elsevier, 2009.

[104] Cyril F Bourgeois, Franck Mortreux, and Didier Auboeuf. The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat. Rev. Mol. Cell Biol., Vol. 17, pp. 426–438, 2016.

[105] Zhongyu Xie, Junbiao Dai, Lunzhi Dai, Minjia Tan, Zhongyi Cheng, Yeming Wu, Jef D Boeke, and Yingming Zhao. Lysine succinylation and lysine malonylation in histones. Mol. Cell Proteomics., Vol. 11, No. 5, pp. 100– 107, 2012.

[106] Sami N Guzder, Patrick Sung, Louise Prakash, and Satya Prakash. Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the non- transcribed DNA strand, is an ATP-dependent DNA damage sensor. J. Biol. Chem., Vol. 272, No. 35, pp. 21665–21668, 1997.

[107] Oriana Muzzin, Elizabeth A Campbell, Lulin Xia, Elena Severinova, Seth A Darst, and Konstantin Severinov. Disruption of Escherichia coli hepA, an RNA polymerase-associated protein, causes UV sensitivity. J. Biol. Chem., Vol. 273, No. 24, pp. 15157–15161, 1998.

[108] Richard D Wood, Michael Mitchell, John Sgouros, and Tomas Lindahl. Hu- man DNA repair genes. Science., Vol. 291, No. 5507, pp. 1284–1289, 2001.

[109] Richard D Wood, Michael Mitchell, and Tomas Lindahl. Human DNA repair genes, 2005. Mutat. Res., Vol. 577, No. 1, pp. 275–283, 2005.

[110] Masahiko Watanabe, Takahiro Kikawada, and Takashi Okuda. Increase of internal ion concentration triggers trehalose synthesis associated with cryp- tobiosis in larvae of Polypedilum vanderplanki. J. Exp. Biol., Vol. 206, No. 13, pp. 2281–2286, 2003.

[111] M Watanabe, T Kikawada, N Minagawa, F Yukuhiro, and T Okuda. Mech- anism allowing an insect to survive complete dehydration and extreme tem- peratures. J. Exp. Biol., Vol. 205, No. 18, pp. 2799–2802, 2002.

[112] Takahiro Kikawada, Yuichi Nakahara, Yasushi Kanamori, Ken-ichi Iwata, Masahiko Watanabe, Brian McGee, Alan Tunnacliffe, and Takashi Okuda. Dehydration-induced expression of LEA proteins in an anhydrobiotic chi- ronomid. Biochem. Biophys. Res. Commun., Vol. 348, No. 1, pp. 56–61, 2006.

[113] Takahiro Kikawada, Ayako Saito, Yasushi Kanamori, Mika Fu-jita, Katarzyna S´nig´orska, Masahiko Watanabe, and Takashi Okuda. Dehydration-inducible changes in expression of two aquaporins in the sleeping chironomid, polypedilum vanderplanki. Biochim Biophys Acta Biomembr, Vol. 1778, No. 2, pp. 514–520, 2008.

[114] Eric Weterings and David J Chen. The endless tale of non-homologous end- joining. Cell Res., Vol. 18, pp. 114–124, 2008.

[115] Anthony J Davis and David J Chen. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res., Vol. 2, No. 3, pp. 130–143, 2013.

[116] Zhiyong Mao, Michael Bozzella, Andrei Seluanov, and Vera Gorbunova. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst.)., Vol. 7, No. 10, pp. 1765–1771, 2008.

[117] Sebastien Dupont, Alexander Rapoport, Patrick Gervais, and Laurent Beney. Survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl. Microbiol. Biotechnol., Vol. 98, No. 21, pp. 8821–8834, 2014.

[118] James S Clegg. Cryptobiosis—a peculiar state of biological organization. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., Vol. 128, No. 4, pp. 613– 624, 2001.

[119] Rie Hatanaka, Oleg Gusev, Richard Cornette, Sachiko Shimura, Shingo Kikuta, Jun Okada, Takashi Okuda, and Takahiro Kikawada. Diversity of the expression profiles of late embryogenesis abundant (LEA) protein encod- ing genes in the anhydrobiotic midge Polypedilum vanderplanki. Planta, Vol. 242, No. 2, pp. 451–459, 2015.

[120] Richard Cornette, Yasushi Kanamori, Masahiko Watanabe, Yuichi Naka- hara, Oleg Gusev, Kanako Mitsumasu, Keiko Kadono-Okuda, Michihiko Shimomura, Kazuei Mita, Takahiro Kikawada, et al. Identification of anhydrobiosis-related genes from an expressed sequence tag database in the cryptobiotic midge Polypedilum vanderplanki (diptera; chironomidae). J. Biol. Chem., Vol. 285, No. 46, pp. 35889–35899, 2010.

[121] Simon Andrews. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, 2010.

[122] Chien-Chi Lo and Patrick SG Chain. Rapid evaluation and quality control of next generation sequencing data with FaQCs. BMC Bioinformatics, Vol. 15, No. 366, 2014.

[123] Daehwan Kim, Ben Langmead, and Steven L Salzberg. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods, Vol. 12, pp. 357–360, 2015.

[124] Uwe Ligges and Martin M¨achler. Scatterplot3d - an R package for visualizing multivariate data. J Stat Softw, Vol. 8, No. 11, pp. 1–20, 2003.

[125] Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., Vol. 15, No. 550, 2014.

[126] Sarah K Kummerfeld and Sarah A Teichmann. DBD: a transcription factor prediction database. Nucleic Acids Res., Vol. 34, pp. D74–D81, 2006.

[127] Hanbo Chen. VennDiagram: Generate high-resolution Venn and Euler plots, 2018. R package version 1.6.20.

[128] Maximino Aldana, Enrique Balleza, Stuart Kauffman, and Osbaldo Re- sendiz. Robustness and evolvability in genetic regulatory networks. J. Theor. Biol., Vol. 245, No. 3, pp. 433–448, 2007.

[129] Roland Wiese, Markus Eiglsperger, and Michael Kaufmann. yFiles— visualization and automatic layout of graphs. In Graph Drawing Software, pp. 173–191. Springer, 2004.

[130] Gabor Csardi, Tamas Nepusz, et al. The igraph software package for complex network research. InterJournal, Complex Systems, Vol. 1695, No. 5, pp. 1–9, 2006.

[131] Paul Erd˝os and Alfr´ed R´enyi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, Vol. 5, No. 1, pp. 17–60, 1960.

[132] Peter Langfelder and Steve Horvath. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, Vol. 9, No. 559, 2008.

[133] Andy M Yip and Steve Horvath. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics, Vol. 8, No. 22, 2007.

[134] Tadeusz Calin´ski and Jerzy Harabasz. A dendrite method for cluster analy- sis. Commun Stat Theory Methods, Vol. 3, No. 1, pp. 1–27, 1974.

[135] Seth Falcon and Gentleman Robert. Using GOstats to test gene lists for GO term association. Bioinformatics, Vol. 23, No. 2, pp. 257–8, 2007.

[136] Paul Shannon and Matt Richards. MotifDb: An Annotated Collection of Protein-DNA Binding Sequence Motifs, 2018. R package version 1.24.1.

[137] Bernhard Pfaff. VAR, SVAR and SVEC models: Implementation within R package vars. J Stat Softw, Vol. 27, No. 4, pp. 1–32, 2008.

[138] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network struc- ture, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.

[139] Yusuke T. Maeda and Masaki Sano. Regulatory dynamics of synthetic gene networks with positive feedback. J. Mol. Biol., Vol. 359, No. 4, pp. 1107 – 1124, 2006.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る