リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「過冷却保存および高静水圧印加による脱細胞化手法の確立 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

過冷却保存および高静水圧印加による脱細胞化手法の確立 (本文)

善明, 大樹 慶應義塾大学

2021.03.23

概要

細胞を立体的に組み上げて三次元組織を人工的に作製する考え方を組織工学という(図 1.1).組織工学は多種類の細胞の相互作用を視野に入れることで生体組織や器官の成り立ちを求めるものと,組織や器官を構築して医療に用いるという二面性を持っている[1].後者について考えた場合,細胞,足場材料(スキャフォールド),および生理活性物質の三つが組み合わさることで,三次元組織や臓器が構築される(図 1.2)[2].細胞については,ES 細胞や iPS 細胞に代表される多能性幹細胞についての研究が盛んになったことで近年急激に進歩した.生理活性物質は身体のはたらきを調節する物質であり,生体から合成されるものと生体内では合成されないものが存在する.また,スキャフォールドは細胞が接着するための足場材料であり,細胞を三次元的に培養するために必要不可欠なものである[3].組織工学で必要な細胞,スキャフォールド,生理活性物質はそれぞれ多くの研究がされており,組織工学を用いた三次元組織の作製に期待が高まっている.

生体組織が再生すると足場材料は不要になるため,足場材料の原料には生体吸収性高分 子が使用されることが多い.様々な種類の生体吸収性材料が開発されているが,天然高分子,合成高分子,およびセラミックスの三種類に分類される.天然高分子にはコラーゲン,ゼラ チン,フィブリン,アルギン酸,ヒアルロン酸などが存在する[4-5].合成高分子は,ポリ L 乳酸,ポリカプロラクトン(PCL) , ポリグリコール酸(PGA), ポリ乳酸-グリコール酸などが 存在し,セラミックスはリン酸三カルシウムなどが用いられている[6-9].天然高分子と合成 高分子にはそれぞれメリットとデメリットがある.天然高分子は細胞接着,細胞増殖,細胞 分化などを促進するための細胞接着分子が含まれているが,十分な機械的強度がないこと が問題視されている[10-12].一方,合成高分子は機械的強度が高いものの,天然高分子と比 較して細胞との相互作用が弱い問題がある[13-14].このため,デメリットを克服するために 様々な生体材料が開発されつつある.足場材料が体外で使用される場合,細胞と組み合わせ て体内へ埋入する場合を除き生体吸収性である必要はない[15].したがって,生体吸収性材 料に加えてポリエリレングリコールハイドロゲル,シリコーンゴム,ポリアクリルアミドハ イドロゲル,ガラス,金属など,非吸収性の材料が用いられることもある[15-17].この中で, 高分子は加工性が高いことから線維,スポンジ,微粒子,ハイドロゲルなど,様々な形状の 足場材料が開発されている(図 1.3)[15].

体内で生体組織を再生させるための足場材料に求められる条件は,①細胞が接着できること,②周囲からの細胞,栄養,酵素などの供給と老廃物の排出を可能にする構造であること,③再生組織の形態を決定できること,④生体組織の再生のためのスペースが確保できることが挙げられる[15].一方,体外で使用される際には,細胞を大量に培養し,目的の細胞に分化させることが求められる.足場材料の作製方法として,エマルジョン凍結乾燥法,エレクトロスピニング法,光造形法などが存在する[18].また,3D バイオプリンティングにより細胞パターンを作成する方法も存在する.現在,皮膚,血管,軟骨などの比較的単純な形状の組織を作製することが可能であり,臨床応用が行われているものも存在する[19-20].組織工学により生体外で組織を作製することにより,臓器移植におけるドナー不足を解消することが期待される.しかしながら,いずれの作製方法においても心臓や肝臓といった複雑かつ三次元的な組織を作製することは困難であり,ドナー不足解消には至っていないのが現状である.したがって,三次元的な生体組織を作製するためには前述の手法とは別の方法が必要である.

この論文で使われている画像

参考文献

[1] 岩田博夫, 生体組織工学, 東京, 産業図書 (1995).

[2] Kim SH, Kim JE, Kim SH, Jung Y: Substance P/dexamethasone-encapsulated PLGA scaffold fabricated using supercritical fluid process for calvarial bone regeneration. J Tissue Eng Regen Med., 11(12), 3469-3480 (2017).

[3] Zhang H, Zhou L, Zhang W: Control of scaffold degradation in tissue engineering: a review. Phys Chem Chem Phys., 20(5), 492-502 (2014).

[4] Qiao Y, Liu X, Zhou X, Zhang H, Zhang W, Xiao W, Pan G, Cui W, Santos HA, Shi Q: Gelatin Templated Polypeptide Co-Cross-Linked Hydrogel for Bone Regeneration. Phys Adv Healthc Mater., 9(1), e1901239 (2020).

[5] Dulnik J, Kolbuk D, Denis P: The effect of a solvent on cellular response to PCL/gelatin and PCL/collagen electrospun nanofibers. Eur Polym J., 104, 147-156 (2018).

[6] Haghjooy Javanmard S, Anari J, Zargar Kharazi A, Vatankhah E: In vitro hemocompatibility and cytocompatibility of a three-layered vascular scaffold fabricated by sequential electrospinning of PCL, collagen, and PLLA nanofibers. J Biomater Appl., 31(3), 438-449 (2016).

[7] Wang L, Dormer NH, Bonewald LF, Detamore MS: Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds. Tissue Eng Part A., 16(6), 1937-1948 (2010).

[8] Bahcecioglu G, Hasirci N, Hasirci V: Cell behavior on the alginate-coated PLLA/PLGA scaffolds. Int J Biol Macromol., 124, 444-450 (2019).

[9] Zhang K, Huang D, Yan Z, Wang C: Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering. J Biomed Mater Res A., 105(7), 1900-1910 (2017).

[10] Zha F, Chen W, Zhang L, Yu D: Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering. J Biomater Sci Polym Ed., 31(4), 519-548 (2020).

[11] Boni R, Ali A, Shavandi A, Clarkson AN: Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci., 25(1), 90 (2018).

[12] Yu L, Dean K, Li L: Polymer blends and composites from renewable resources. Prog Polym Sci., 31(6), 576-602 (2006).

[13] Park KS, Kim BJ, Lih E, Park W, Lee SH, Joung YK, Han DK: Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold-mediated chondrogenesis. Acta Biomater., 73, 204-216 (2018).

[14] Mohammadi Nasr S, Rabiee N, Hajebi S, Ahmadi S, Fatahi Y, Hosseini M, Bagherzadeh M, Ghadiri AM, Rabiee M, Jajarmi V, Webster TJ: Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine. Int J Nanomedicine., 15, 4205-4224 (2020).

[15] 大政健史, 福田淳二,三次元ティッシュエンジニアリング, 東京, エヌ・ティー・エス (2015).

[16] Guo B, Ma PX: Conducting Polymers for Tissue Engineering. Biomacromolecules., 19(6), 1764-1782 (2018).

[17] Khademhosseini A, Langer R: A decade of progress in tissue engineering. Nat Protoc., 11(10), 1775-1781 (2016).

[18] Jammalamadaka U, Tappa K: Recent advances in biomaterials for 3D printing and tissue engineering. J Funct Biomater., 9(1), 22 (2018).

[19] Tarassoli SP, Jessop ZM, Al-Sabah A, Gao N, Whitaker S, Doak S, Whitaker IS: Skin tissue engineering using 3D bioprinting: An evolving research field J Plast Reconstr Aesthet Surg., 71(5), 615-623 (2018).

[20] Anderson-Baron M, Kunze M, Mulet-Sierra A, Adesida AB: Effect of cell seeding density on matrix ‐ forming capacity of meniscus fibrochondrocytes and nasal chondrocytes in meniscus tissue engineering. FASEB J., 34(4), 5538-5551 (2020).

[21] Porzionato A, Stocco E, Barbon S, Grandi F, Macchi V, De Caro R: Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Phys Chem Chem Phys., 19(12), 4117 (2018).

[22] Pu W, Ren J, Chen Y, Shu J, Cui L, Han Y, Xi J, Pei X, Yue W, Han Y: Injectable human decellularized adipose tissue hydrogel containing stem cells enhances wound healing in mouse. Colloids Surf A Physicochem Eng Asp., 604, 125268 (2020).

[23] Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA: Perfusion- decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med., 14(2), 213-221 (2008).

[24] Cheng CW, Solorio LD, Alsberg E: Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv., 32(2), 462- 484 (2014).

[25] Mendoza-Novelo B, Avila EE, Cauich-Rodríguez JV, Jorge-Herrero E, Rojo FJ, Guinea GV, Mata-Mata JL: Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta Biomater., 7(3), 1241-1248 (2011).

[26] Cui H, Chai Y, Yu Y: Progress in developing decellularized bioscaffolds for enhancing skin construction. J Biomed Mater Res A., 107(8), 1849-1859 (2019).

[27] Ventura RD, Padalhin AR, Park CM, Lee BT: Enhanced decellularization technique of porcine dermal ECM for tissue engineering applications. Mater Sci Eng C Mater Biol Appl., 104, 109841 (2019).

[28] Seo Y, Jung Y, Kim SH: Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater., 67, 270-281 (2018).

[29] Gratzer PF, Harrison RD, Woods T: Matrix alteration and not residual sodium dodecyl sulfate cytotoxicity affects the cellular repopulation of a decellularized matrix. Tissue Eng., 12(10), 2975-2983 (2006).

[30] Lu H, Hoshiba T, Kawazoe N, Chen G: Comparison of decellularization techniques for preparation of extracellular matrix scaffolds derived from three‐dimensional cell culture. J Biomed Mater Res A., 100(9), 2507-2516 (2012).

[31] Conklin BS, Richter ER, Kreutziger KL, Zhong DS, Chen C: Development and evaluation of a novel decellularized vascular xenograft. Med Eng Phys., 24(3), 173-183 (2002)

[32] Meyer SR, Chiu B, Churchill TA, Zhu L, Lakey JR, Ross DB: Comparison of aortic valve allograft decellularization techniques in the rat. J Biomed Mater Res A., 79(2), 254- 262 (2006).

[33] Crapo PM, Gilbert TW, Badylak SF: An overview of tissue and whole organ decellularization processes. Biomaterials., 32(12), 3233-3243 (2011).

[34] Gui L, Chan SA, Breuer CK, Niklason LE: Novel utilization of serum in tissue decellularization. Tissue Eng Part C Methods., 16(2), 173-184 (2010).

[35] Burk J, Erbe I, Berner D, Kacza J, Kasper C, Pfeiffer B, Winter K, Brehm W: Freeze- thaw cycles enhance decellularization of large tendons. Tissue Eng Part C Methods., 20(4), 276-284 (2014).

[36] Dang Y, Waxman S, Wang C, Jensen A, Loewen RT, Bilonick RA, Loewen NA.: Freeze- thaw decellularization of the trabecular meshwork in an ex vivo eye perfusion model. PeerJ., 5, e3629 (2017).

[37] Roth SP, Glauche SM, Plenge A, Erbe I, Heller S, Burk J: Automated freeze-thaw cycles for decellularization of tendon tissue. BMC Biotechnol., 17(1), 13 (2017).

[38] Xing Q, Yates K, Tahtinen M, Shearier E, Qian Z, Zhao F: D Decellularization of Fibroblast Cell Sheets for Natural Extracellular Matrix Scaffold Preparation. Tissue Eng Part C Methods., 21(1), 77-87 (2015).

[39] Pulver, Shevtsov A, Leybovich B, Artyuhov I, Maleev Y, Peregudov A: Production of organ extracellular matrix using a freeze-thaw cycle employing extracellular cryoprotectants. Cryo Letters., 35(5), 400-406 (2014).

[40] Zager Y, Kain D, Landa N, Leor J, Maor E: Optimization of irreversible electroporation protocols for in-vivo myocardial decellularization. PLoS One., 11(11), e0165475 (2016).

[41] Baah-Dwomoh A, Rolong A, Gatenholm P, Davalos RV: The feasibility of using irreversible electroporation to introduce pores in bacterial cellulose scaffolds for tissue engineering. Appl Microbiol Biotechnol., 99(11), 4785-4794 (2015).

[42] Golberg A, Bruinsma BG, Jaramillo M, Yarmush ML, Uygun BE: Rat liver regeneration following ablation with irreversible electroporation. PeerJ., 4, e1571 (2016).

[43] Phillips M, Maor E, Rubinsky B: Nonthermal irreversible electroporation for tissue decellularization. J Biomech Eng., 132(9), 091003 (2010).

[44] Golberg A, Yarmush ML: Nonthermal irreversible electroporation: fundamentals, applications, and challenges. IEEE Trans Biomed Eng., 60(3), 707-714 (2013).

[45] Hashimoto Y, Funamoto S, Sasaki S, Honda T, Hattori S, Nam K, Kimura T, Mochizuki M, Fujisato T, Kobayashi H, Kishida A: Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials., 31(14), 3941-3948 (2010).

[46] Sasaki S, Funamoto S, Hashimoto Y, Kimura T, Honda T, Hattori S, Kobayashi H, Kishida A, Mochizuki M: In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Mol Vis., 15, 2022-2028 (2009).

[47] Hashimoto Y, Hattori S, Sasaki S, Honda T, Kimura T, Funamoto S, Kobayashi H, Kishida A: Ultrastructural analysis of the decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty in a rabbit model. Sci Rep., 6, 27734 (2016).

[48] Hashimoto Y, Funamoto S, Sasaki S, Negishi J, Honda T, Hattori S, Nam K, Kimura T, Mochizuki M, Kobayashi H, Kishida A: Corneal Regeneration by Deep Anterior Lamellar Keratoplasty (DALK) Using Decellularized Corneal Matrix. PLoS One., 10(7), e0131989 (2015).

[49] Watanabe N, Mizuno M, Matsuda J, Nakamura N, Otabe K, Katano H, Ozeki N, Kohno Y, Kimura T, Tsuji K, Koga H, Kishida A, Sekiya I: Comparison of High‐ Hydrostatic‐Pressure Decellularized Versus Freeze‐Thawed Porcine Menisci. J Orthop Res., 37(11), 2466-2475 (2019).

[50] Negishi J, Funamoto S, Kimura T, Nam K, Higami T, Kishida A: Porcine radial artery decellularization by high hydrostatic pressure. J Tissue Eng Regen Med., 9(11), E144-E151 (2015).

[51] Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K, Kitamura S, Fujisato T, Kishida A: The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials., 31(13), 3590-3595 (2010).

[52] Negishi J, Funamoto S, Kimura T, Nam K, Higami T, Kishida A: Effect of treatment temperature on collagen structures of the decellularized carotid artery using high hydrostatic pressure. J Artif Organs., 14(3), 223-231 (2011).

[53] Wu P, Nakamura N, Kimura T, Nam K, Fujisato T, Funamoto S, Higami T, Kishida A: Decellularized porcine aortic intima-media as a potential cardiovascular biomaterial. Interact Cardiovasc Thorac Surg., 21(2), 189-194 (2015).

[54] Kimura T, Kondo M, Hashimoto Y, Fujisato T, Nakamura N, Kishida A: Surface Topography of PDMS Replica Transferred from Various Decellularized Aortic Lumens Affects Cellular Orientation. ACS Biomater Sci Eng., 5, 5721-5726 (2019).

[55] Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K, Kitamura S, Fujisato T, Kishida A: The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials., 31(13), 3590-3595 (2010).

[56] Morimoto N, Mahara A, Jinno C, Ogawa M, Kakudo N, Suzuki S, Fujisato T, Kusumoto K, Yamaoka T.: The superiority of the autografts inactivated by high hydrostatic pressure to decellularized allografts in a porcine model. J Biomed Mater Res B Appl Biomater., 105(8), 2653-2661 (2017).

[57] Liem PH, Morimoto N, Mahara A, Jinno C, Shima K, Ogino S, Sakamoto M, Kakudo N, Inoie M, Kusumoto K, Fujisato T, Suzuki S, Yamaoka T: Preparation of Inactivated Human Skin Using High Hydrostatic Pressurization for Full-Thickness Skin Reconstruction. PLoS One., 10(7), e0133979 (2015).

[58] Le TM, Morimoto N, Ly NTM, Mitsui T, Notodihardjo SC, Munisso MC, Kakudo N, Moriyama H, Yamaoka T, Kusumoto K: Hydrostatic pressure can induce apoptosis of the skin. Sci Rep., 10(1), 17594 (2020).

[59] Morimoto N, Mahara A, Jinno C, Ogawa M, Kakudo N, Suzuki S, Kusumoto K, Fujisato T, Yamaoka T: An evaluation of the engraftment and the blood flow of porcine skin autografts inactivated by high hydrostatic pressure. J Biomed Mater Res B Appl Biomater., 105(5), 1091-1101 (2017).

[60] Jinno C, Morimoto N, Mahara A, Liem PH, Sakamoto M, Ogino S, Kakudo N, Inoie M, Fujisato T, Kusumoto K, Suzuki S, Yamaoka T: Inactivation of Human Nevus Tissue Using High Hydrostatic Pressure for Autologous Skin Reconstruction: A Novel Treatment for Giant Congenital Melanocytic Nevi. Tissue Eng Part C Methods., 21(11), 1178-1187 (2015).

[61] Potekhin SA, Senin AA, Abdurakhmanov NN, Tiktopulo EI: High pressure stabilization of collagen structure. Adv Exp Med Biol., 1081, 289-320 (2018).

[62] Lee S, Ryu KJ, Kim B, Kang D, Kim YY, Kim T: Comparison between slow freezing and vitrification for human ovarian tissue cryopreservation and xenotransplantation. Int J Mol Sci., 20(13),3346 (2019).

[63] Gurruchaga H, Saenz Del Burgo L, Hernandez RM, Orive G, Selden C, Fuller B, Ciriza J, Pedraz JL: Advances in the slow freezing cryopreservation of microencapsulated cells. J Control Release., 281, 119-138 (2018).

[64] Seki S, Basaki K, Komatsu Y, Fukuda Y, Yano M, Matsuo Y, Obata T, Matsuda Y, Nishijima K: Vitrification of one-cell mouse embryos in cryotubes. Cryobiology., 81, 132-137 (2018).

[65] Isachenko V, Todorov P, Seisenbayeva A, Toishibekov Y, Isachenko E, Rahimi G, Mallmann P, Foth D, Merzenich M: Vitrification of human pronuclear oocytes by direct plunging into cooling agent: Non sterile liquid nitrogen vs. sterile liquid air. Cryobiology., 80, 84-88 (2018).

[66] Akiyama Y, Shinose M, Watanabe H, Yamada S, Kanda Y: Cryoprotectant-free cryopreservation of mammalian cells by superflash freezing. Proc Natl Acad Sci U S A., 116(16), 7738-7743 (2019).

[67] 高野 光男: 非凍結状態または部分凍結状態による細胞の低温保存. 日本食品低温保蔵学会誌, 13(2), 54-58 (1987).

[68] Fujikawa S, Kuwabara C, Kasuga J, Arakawa K: Supercooling-Promoting (Anti-ice Nucleation) Substances. Acta Biomater., 67, 270-281 (2018).

[69] Cui W, Jia L, Chen Y, Li Y, Li J, Mo S: Supercooling of Water Controlled by Nanoparticles and Ultrasound. Acta Biomater., 13(1), 145 (2018).

[70] Matsuda H, Yagi T, Matsuoka J, Yamamura H, Tanaka N: Subzero nonfreezing storage of isolated rat hepatocytes in University of Wisconsin solution. Transplantation., 67(1), 186-191 (1999).

[71] Usta OB, Kim Y, Ozer S, Bruinsma BG, Lee J, Demir E, Berendsen TA, Puts CF, Izamis ML, Uygun K, Uygun BE, Yarmush ML: Supercooling as a Viable Non-Freezing Cell Preservation Method of Rat Hepatocytes. PLoS One., 8(7), e69334 (2013).

[72] Matsumoto N, Yoshizawa H, Kagamu H, Abe T, Fujita N, Watanabe S, Kuriyama H, Ishiguro T, Tanaka J, Suzuki E, Kobayashi K, Gemma A, Kudoh S, Gejyo F: Successful liquid storage of peripheral blood stem cells at subzero non-freezing temperature. Bone Marrow Transplant., 30(11), 777-784 (2002).

[73] Huang H, Rey-Bedón C, Yarmush ML, Usta OB: Deep-supercooling for extended preservation of adipose-derived stem cells. Cryobiology., 92, 67-75 (2020).

[74] Puts CF, Berendsen TA, Bruinsma BG, Ozer S, Luitje M, Usta OB, Yarmush ML, Uygun K: Polyethylene glycol protects primary hepatocytes during supercooling preservation. Cryobiology., 71(1), 125-129 (2015).

[75] Sultana T, Lee JI, Park JH, Lee S: Supercooling Storage for the Transplantable Sources From the Rat and the Rabbit: A Preliminary Report. Transplant Proc., 50(4), 1178-1182 (2018).

[76] Moussa M, Dumont F, Perrier-Cornet JM, Gervais P: Cell inactivation and membrane damage after long‐term treatments at sub‐zero temperature in the supercooled and frozen states. Biotechnol Bioeng., 101(6), 1245-1255 (2008).

[77] Berendsen TA, Bruinsma BG, Puts CF, Saeidi N, Usta OB, Uygun BE, Izamis ML, Toner M, Yarmush ML, Uygun K: Supercooling enables long-term transplantation survival following 4 days of liver preservation. Nat Med., 20(7), 790-793 (2014).

[78] Kato H, Tomita S, Yamaguchi S, Ohtake H, Watanabe G: Subzero 24-hr Nonfreezing Rat Heart Preservation: A Novel Preservation Method in a Variable Magnetic Field. Transplantation., 94(5), 473-477 (2012).

[79] Que W, Hu X, Fujino M, Terayama H, Sakabe K, Fukunishi N, Zhu P, Yi SQ, Yamada Y, Zhong L, Li XK: Prolonged Cold Ischemia Time in Mouse Heart Transplantation Using Supercooling Preservation. Transplantation., 104(9), 1879-1889 (2020).

[80] Abbasi J: Supercooling Triples Liver Preservation Time. JAMA., 322(18), 1756 (2019).

[81] Bruinsma BG, Berendsen TA, Izamis ML, Yeh H, Yarmush ML, Uygun K: Supercooling preservation and transplantation of the rat liver. Nat Protoc., 10(3), 484-494 (2015).

[82] Bruinsma BG, Uygun K: Subzero organ preservation: the dawn of a new ice age? Curr Opin Organ Transplant., 22(3), 281-286 (2017).

[83] de Vries RJ, Tessier SN, Banik PD, Nagpal S, Cronin SEJ, Ozer S, Hafiz EOA, van Gulik TM, Yarmush ML, Markmann JF, Toner M, Yeh H, Uygun K: Subzero non-frozen preservation of human livers in the supercooled state. Nat Protoc., 15(6), 270-281 (2020).

[84] Kang T, You Y, Jun S: Supercooling preservation technology in food and biological samples: a review focused on electric and magnetic field applications. Food Sci Biotechnol., 29(3), 303-321 (2020).

[85] Kang T, Shafel T, Lee D, Lee CJ, Lee SH, Jun S: Quality Retention of Fresh Tuna Stored Using Supercooling Technology. Foods., 9(10), 1356 (2020).

[86] Wowk B: Electric and magnetic fields in cryopreservation. Cryobiology., 64(3), 301- 303 (2012).

[87] Southard JH, van Gulik TM, Ametani MS, Vreugdenhil PK, Lindell SL, Pienaar BL, Belzer FO: Important components of the UW solution. Transplantation., 49(2),251- 257 (1990).

[88] 須永 康太郎, 桑名 健太, 土肥 健純: 磁場下過冷却凍結保存法のための凍結槽一体型磁場印加用コイルの開発. ライフサポート, 28(3), 97-106 (2016).

[89] Amir G, Horowitz L, Rubinsky B, Yousif BS, Lavee J, Smolinsky AK: Subzero nonfreezing cryopresevation of rat hearts using antifreeze protein I and antifreeze protein III. Cryobiology., 48(3), 273-282 (2004).

[90] Okamoto T, Nakamura T, Zhang J, Aoyama A, Chen F, Fujinaga T, Shoji T, Hamakawa H, Sakai H, Manabe T, Wada H, Date H, Bando T: Successful Sub-zero Non-freezing Preservation of Rat Lungs at −2°C Utilizing a New Supercooling Technology. J Heart Lung Transplant., 27(10), 1150-1157 (2008).

[91] Evans PJ: Prevention of hypothermic haloing extends the preservation time of hepatocytes at non freezing temperatures. Cryobiology., 65(3), 263-269 (2012).

[92] Seguchi R, Watanabe G, Kato H, Yamaguchi S: Subzero 12-hour Nonfreezing Cryopreservation of Porcine Heart in a Variable Magnetic Field. Transplant Direct., 1(9), e33 (2015).

[93] Li Y, Chen HS, Shaheen M, Joo DJ, Amiot BP, Rinaldo P, Nyberg SL: Cold storage of porcine hepatocyte spheroids for spheroid bioartificial liver. Xenotransplantation., 26(4), e12512 (2019).

[94] Gani MM, Islam MS, Ullah MA: Optimal PID tuning for controlling the temperature of electric furnace by genetic algorithm. SN Appl Sci., 1, 880 (2019).

[95] Siddique M, Kim WS, Kim YS, Kim TJ, Choi CH, Lee HJ, Chung SO, Kim YJ: Effects of Temperatures and Viscosity of the Hydraulic Oils on the Proportional Valve for a Rice Transplanter Based on PID Control Algorithm. Agriculture., 10(3), 73 (2020).

[96] Song JI, Cheng WI, Xu Z, Yuan Shuai, Liu M: Study on PID temperature control performance of a novel PTC material with room temperature Curie point. Int J Heat Mass Transf., 95, 1038-1046 (2016).

[97] Song Y, Wu S, Yan YY: Control strategies for indoor environment quality and energy efficiency—a review. Int J Low-Carbon Tech., 10(3), 305-312 (2015).

[98] Privara S, Siroky J, Ferkl L, Cigler J: Model predictive control of a building heating system: the first experience. Acta Biomater., 43(2-3), 564-572 (2011).

[99] Kumar M, Prasad D, Giri BS, Singh RS: Temperature control of fermentation bioreactor for ethanol production using IMC-PID controller. Biotechnol Rep (Amst)., 22, e00319 (2019).

[100] Yu TH, Liu J, Zhou YX: Using electrical impedance detection to evaluate the viability of biomaterials subject to freezing or thermal injury. Anal Bioanal Chem., 378(7), 1793-1800 (2004).

[101] Jin M, Jiang L, Lu M, Xu N, Zhu Q: Characterization of internal damage of concrete subjected to freeze-thaw cycles by electrochemical impedance spectroscopy. Constr Build Mater., 152(15), 702-707 (2017).

[102] Sezdi M, Bayik M, Ulgen Y: Storage effects on the Cole-Cole parameters of erythrocyte suspensions. Physiol Meas., 27(7), 623-635 (2006).

[103] Ando Y, Hagiwara S, Nabetani H, Okunishi T, Okadome H: Impact of ice crystal development on electrical impedance characteristics and mechanical property of green asparagus stems. J Food Eng., 256, 46-52 (2019).

[104] Thakur M, Mergel K, Weng A, Frech S, Gilabert-Oriol R, Bachran D, Melzig MF, Fuchs H: Real time monitoring of the cell viability during treatment with tumor-targeted toxins and saponins using impedance measurement. Biosens Bioelectron., 35(1), 503- 506 (2012).

[105] Deurenberg P, Andreoli A, de Lorenzo A: Multi-frequency bioelectrical impedance: a comparison between the Cole-Cole modelling and Hanai equations with the classical impedance index approach. Ann Hum Biol., 23(1), 31-40 (1996).

[106] Cornish BH, Ward LC, Thomas BJ, Jebb SA, Elia M.: Evaluation of multiple frequency bioelectrical impedance and Cole-Cole analysis for the assessment of body water volumes in healthy humans. Eur J Clin Nutr., 50(3), 159-164 (1996).

[107] Mortadi A, Elmelouky A, Chahbi M, Ghyati NE, Zaim S, Cherkaoui O, El Moznine R: Flocculation monitoring of wastewater by using impedance spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc., 224, 117437 (2020).

[108] Li J, Wan N, Wen J, Cheng G, He L, Cheng L: Quantitative detection and evaluation of thrombus formation based on electrical impedance spectroscopy. Biosens Bioelectron., 141, 111437 (2019).

[109] Zhang J, Zhang C, Xiao J, Jiang J: A PZT-Based Electromechanical Impedance Method for Monitoring the Soil Freeze⁻Thaw Process. Sensors (Basel)., 19(5), 1107 (2019).

[110] Miyoshi H, Ehashi T, Ohshima N, Jagawa A: Cryopreservation of Fibroblasts Immobilized Within a Porous Scaffold: Effects of Preculture and Collagen Coating of Scaffold on Performance of Three‐Dimensional Cryopreservation. Artif Organs., 34(7), 609-614 (2010).

[111] Forsey RW, Chaudhuri JB: Validity of DNA analysis to determine cell numbers in tissue engineering scaffolds. Biotechnol Lett., 31(6), 819-823 (2009).

[112] Li R, Yu G, Azarin SM, Hubel A: Freezing Responses in DMSO-Based Cryopreservation of Human iPS Cells: Aggregates Versus Single Cells., Tissue Eng Part C Methods., 24(5), 289-99 (2018).

[113] Ragoonanan V, Hubel A, Aksan A: Response of the cell membrane-cytoskeleton complex to osmotic and freeze/thaw stresses, Cryobiology., 61(3), 335-44 (2010).

[114] Frey B, Franz S, Sheriff A, Korn A, Bluemelhuber G, Gaipl US, Voll RE, Meyer-Pittroff R, Herrmann M: Hydrostatic pressure induced death of mammalian cells engages pathways related to apoptosis or necrosis. Cell Mol Biol (Noisy-le-grand)., 50(4), 459- 467 (2004).

[115] Frey B, Janko C, Ebel N, Meister S, Schlücker E, Meyer-Pittroff R, Fietkau R, Herrmann M, Gaipl US: Cells Under Pressure - Treatment of Eukaryotic Cells with High Hydrostatic Pressure, from Physiologic Aspects to Pressure Induced Cell Death. Curr Med Chem.,15(23), 2329-2336 (2008).

[116] Diehl P, Schmitt M, Blümelhuber G, Frey B, Van Laak S, Fischer S, Muehlenweg B, Meyer-Pittroff R, Gollwitzer H, Mittelmeier W: Induction of tumor cell death by high hydrostatic pressure as a novel supporting technique in orthopedic surgery. Oncol Rep., 10(6), 1851-1855 (2003).

[117] Mahara A, Morimoto N, Sakuma T, Fujisato T, Yamaoka T: Complete Cell Killing by Applying High Hydrostatic Pressure for Acellular Vascular Graft Preparation. Biomed Res Int., 2014, 379607 (2014).

[118] Mitsui T, Morimoto N, Mahara A, Notodihardjo SC, Le TM, Munisso MC, Moriyama M, Moriyama H, Kakudo N, Yamaoka T, Kusumoto K: Exploration of the Pressurization Condition for Killing Human Skin Cells and Skin Tumor Cells by High Hydrostatic Pressure. Biomed Res Int., 2020, 9478789 (2020).

[119] Nan J, Zou M, Wang H, Xu C, Zhang J, Wei B, He L, Xu Y.: Effect of ultra-high pressure on molecular structure and properties of bullfrog skin collagen. Int J Biol Macromol.,111, 200-207 (2018).

[120] Silver FH: A molecular model for linear and lateral growth of type I collagen fibrils. Coll Relat Res., 2(3), 219-229 (1982).

[121] Ward NP, Hulmes DJ, Chapman JA: Collagen self-assembly in vitro: electron microscopy of initial aggregates formed during the lag phase. J Mol Biol., 190(1), 107- 112 (1986).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る