リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「乾燥地植物生産における葉面結露の生理生態的効果」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

乾燥地植物生産における葉面結露の生理生態的効果

横山, 岳 YOKOYAMA, Gaku ヨコヤマ, ガク 九州大学

2022.02.28

概要

研究の背景・目的
 乾燥地では,気候変動や人口増加に伴い水不足の深刻化が予測されている.そのため水消費の大部分を占める農業分野においても水利用効率の向上や未利用水資源の活用が求められている.結露による葉の濡れ(葉面結露)は,乾燥地を含む地球上の多くの地域で発生する現象であり,乾燥地植物生産における新たな水資源としての可能性が注目されている.一方,葉面結露は,降水量や灌漑水量と比較して極めて少量であるため,“水量”に基づいて水資源の価値を評価する従来の評価方法では,葉面結露の水資源としての有用性を評価することは困難である.乾燥地植物生産における灌水の主な目的は,水ストレスに伴う植物の生理生態機能(光合成,蒸散など)の活性低下を軽減するためである.したがって,葉面結露が乾燥地植物生産に及ぼす影響は,“水量”に基づく評価ではなく“植物の生理生態機能への影響”に基づいて評価するべきである.本研究では,葉面結露が植物の生理生態機能に及ぼす影響を明らかにすることを目的とした.

(1)乾燥地農地における葉面結露の発生特性の解析
 葉面結露が植物の生理生態機能に及ぼす影響を明らかにするためには,気象環境によって決定される葉面結露の発生特性(頻度・持続時間など)を把握する必要がある.本研究では,中国北西部の乾燥地帯に位置する甘粛省白銀市郊外のトウモロコシ畑地を研究対象地として,2018-2020年の栽培期間(4-9月)における葉面結露の発生特性と気象環境の観測を行った.葉面結露は,降水量と比較して少量(降水量の約5%)であったが,高頻度(栽培期間の55%の日数)で発生した.また,葉面結露は平均的に夜23時から翌朝の9時まで,10時間にわたって継続した.以上の結果より,葉面結露は水量は少ないものの,高頻度で発生し,長時間継続することから,植物の生理生態機能に影響を及ぼし得ることを示した.

(2)葉面からの水分吸収が植物の水分状態に及ぼす影響
 植物-環境系における水の移動は,水ポテンシャル勾配を駆動力とする.そこで,葉面結露が長時間続く夜間においては,葉面の水滴の水ポテンシャルが葉内の水ポテンシャルよりも高い場合,葉面-葉内の水ポテンシャル勾配に従って葉から水分吸収されるという仮説を立てた.また,仮に葉からの水分吸収が起こるならば,根からの吸水が減少する乾燥土壌条件においても,水ストレスによる植物の成長阻害が軽減されるという仮説を立てた.以上の仮説を検証するために,乾燥土壌・湿潤土壌のそれぞれの条件において,葉面結露の有無が夜間の植物水分状態と植物の成長(地上部乾物重)に及ぼす影響を調べた.その結果,実際に乾燥土壌条件では,葉からの水分吸収により植物水分状態が改善されることを明らかにした.一方で,葉面からの水分吸収により水ストレスが緩和されたにもかかわらず,植物の成長(地上部乾物重)は,葉面結露が無い場合と同程度であった.これらの結果から,植物の成長の基となる光合成に対する葉面結露の影響を明らかにする必要性が示唆された.

(3)葉面結露が植物のガス交換の日変化に及ぼす影響
 植物のガス交換(光合成・蒸散)は,収量を決定づける重要な生理生態機能である.一方で,濡れている葉のガス交換を計測することは,既存の測定装置では不可能であるため,葉面結露が植物のガス交換に及ぼす影響は未解明である.本研究では,同化箱に流入・流出するガス濃度差より植物のガス交換を計測するチャンバ法と植物の茎における熱収支に基づいて茎内流量(≒蒸散速度)を計測する茎熱収支法を組み合わせた,独自の計測システムを用いて葉面結露が植物のガス交換に及ぼす影響を調べた.その結果,葉面結露は日単位での水利用効率を向上させることを示した.

 以上の研究は,葉面結露が植物の生理生態機能に及ぼす影響を明らかにすることで,乾燥地植物生産における生産・水利用効率の向上に寄与するものである.

この論文で使われている画像

参考文献

Preface

Falkenmark, M. and Rockström, J.: Balancing water for humans and nature: the new approach in ecohydrology, Earthscan, https://doi.org/10.4324/9781849770521, 2004.

Fischer, G., Tubiello, F.N., van Velthuizen, H., Wiberg, D.A., 2007. Climate change impacts on irrigation water requirements: Effects of mitigation, 1999–2080. Technol. Forecast. Soc. Change 74, 1083–1107. https://doi.org/ 10.1016/j.techfore.2006.05.021.

Huang, J., Yu, H., Dai, A., Wei, Y., & Kang, L., 2017. Drylands face potential threat under 2°C global warming target. Nat. Clim. Change, 7(6), 417–422. https://doi.org/10.1038/nclimate3275.

IPCC (2013) Climate Change 2013: The Physical Science Basis. I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Contribution of Working Group.

Limm, E.B., Simonin, K.A., Bothman, A.G., Dawson, T.E. 2009. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161, 449–459. https://doi.org/ 10.1007/s00442-009-1400-3.

Martin, C.E., von Willert, D.J., 2000. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in South Africa. Plant Biol. 2, 229−242. https://doi.org/10.1055/s-2000-9163.

MEA, Millennium Ecosystem Assessment—Ecosystems and Human Well-Being: Desertification Synthesis (World Resources Institute, Washington, DC, 2005).

Mekonnen, M. M., & Hoekstra, A. Y., 2016. Sustainability: Four billion people facing severe water scarcity. Sci. Adv. 2, 1–7. https://doi.org/10.1126/sciadv.1500323.

Tomaszkiewicz, M., Abou Najm, M., Beysensm D., Alameddine, I., Bou Zeid, E., El-Fadel, M., 2016. Projected climate change impacts upon dew yield in the Mediterranean basin. Sci. Total Environ. 566–567:1339–48. https://doi.org/10.1016/j.scitotenv.2016.05.195.

Vuollekoski, H., Vogt, M., Sinclair, V.A., Duplissy, V.A., Duplissy, J., Järvinen, H., Kyrö, E.M., Makkonen, R., Petäjä, T., Prisle, N.L., Räisänen, P., Sipiliä, M., Ylhäisi, J., Kulmala, M., 2015. Estimates of global dew collection potential on artificial surfaces. Hydrol. Earth Syst. Sci. 19, 601−613. https://doi.org/10.5194/hess-19-601-2015.

Zhang, Q., Wang, S., Yang, F., Yue, P., Yao, T., Wang, W., 2015. Characteristics of dew formation and distribution, and its contribution to the surface water budget in a semi- arid region in China. Bound.-Layer Meteorol. 154 (2), 317–331. https://doi.org/10.1007/s10546-014-9971-x.

Zhang, Y., Hao, X., Sun, H., Hua, D., Qin, J., 2019. How Populus euphratica utilizes dew in an extremely arid region. Plant Soil 443, 493–508. https://doi.org/10.1007/s11104- 019-04244-1.

Chapter 1

Agam, M., Berliner, P.R., 2006. Dew formation and water vapor adsorption in semiarid environments — A review. J. Arid Environ. 65, 572–590. https://doi.org/ 10.1016/j.jaridenv.2005.09.004.Aguirre-Gutiérrez, C.A., Holwerda, F., Goldsmith, G.R., Delagado, J., Yepez, E., Carbajal, N., Escoto-Rodríguez, M., Arredondo, J.T., 2019. The importance of dew in the water balance of a continental semiarid grassland. J. Arid Environ. 168, 26–35. https://doi.org/10.1016/j.jaridenv.2019.05.003.

Berry, C.Z., Emery, N.C., Gotsch, S.G., Goldsmith, G.R., 2019. Foliar water uptake: Processes, pathways, and integration into plant water budgets. Plant Cell Environ. 42, 410–423. https://doi.org/10.1111/pce.13439.

Beysens, D., 1995. The formation of dew. Atmos. Res. 39, 215–237. https://doi.org/10.1016/0169-8095(95)00015-J.

Besysens, D., Muselli, M., Nikolayev, V., Narhe, R., Milimouk, I., 2005. Measurement and modelling of dew in island coastal and alpine areas. Atmos. Res. 73, 1–22. https://doi.org/10.1016/j.atmosres.2004.05.

Buck, A.L., 1981. New equation for computing vapor pressure and enhancement factor. J. Appl. Meteorol. Climatol. 20. 1527–1532. https://doi.org/10.1175/1520- 0450(1981)020%3C1527:NEFCVP%3E2.0.CO;2.

Campbell, G.S., Norman J.M., 1998. An introduction to environmental biophysics, second ed. Springer, New York, USA.

Chen, F., Zhang, M., Argiriou, A., Wang, S., Zhou, X., Liu, X., 2020. Deuterium excess in precipitation reveals water vapor source in the monsoon margin sites in Northwest China. Water 12, 3325. https://doi.org/10.3390/w12123315.

Dawson, T.D., Goldsmith, G.R., 2018. The value of wet leaves. New Phytol. 219, 1156– 1169. https://doi.org/10.1111/nph.15307.

Fang, J., 2020. Variability in condensation water and its determinants in arid regions of north-western China. Ecohydrology 13:e2226. https://doi.org/10.1002/ eco.2226.

Gao, Z., Shi, W., Wang, X., Wang, Y., 2020. Non-rainfall water contributions to dryland jujube plantation evapotranspiration in the Hilly Loess Region of China. J. Hydrol. 583, 124604. https://doi.org/10.1016/j.jhydrol.2020.124604.

Gerlein-Safdi, C., Koohafkan, M.C., Chung, M., Rockwell, F.E., Thompson, S., Caylor, K.K., 2018. Dew deposition suppresses transpiration and carbon uptake in leaves. Agric. For. Meteorol. 259, 305–316. https://doi.org/10.1016/j.agrformet.2018.05.015.

Guo, X., Zha, T., Jia, X., Wu, B., Feng, W., Xie, J., Gong, J., Zhang, Y., Peltola, H., 2016. Dynamics of dew in a cold desert-shrub ecosystem and its abiotic controls. Atmoshere 7, 1–15. https://doi.org/10.3390/atmos7030032.

Guzmán-Delgado, P., Earles, J. M., Zwieniecki, M.A., 2017. Insight into the physiological role of water absorption via the leaf surface from a rehydration kinetics perspective. Plant Cell Environ. 41, 1886–1894. https://doi.org/10.1111/pce.13327.

Jia, Z., Zhao, Z., Zhang, Q., Wu, W., 2019a. Dew yield and its influencing factors at the western edge of Gurbantunggut Desert, China. Water 11, 733. https://doi.org/10.3390/w11040733.

Jia, Z., Wang, Z., Wang, H., 2019b. Characteristics of dew formation in the semiarid Loess Plateau of central Shaanxi province, China. Water 11, 126. https://doi.org/10.3390/w11010126.

Jones, H.G., 2013. Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge university press.

Kimura, K., Yasutake, D., Nakazono, K., & Kitano, M., 2017. Dynamic distribution of thermal effects of an oscillating frost protective fan in a tea field. Biosyst. Eng. 164, 98–109. https://doi.org/10.1016/j.biosystemseng.2017.09.010.

Lekouch, I., Mileta, M., Muselli, M., Milimouk-Melnytchouk, I., Ŝojat, V., Kabbachi, B., Beysens, D., 2010. Comparative chemical analysis of dew and rain water. Atomos. Res. 95, 224–234. https://doi.org/10.1016/j.atmosres.2009.10.002.

Limm, E.B., Simonin, K.A., Bothman, A.G., Dawson, T.E. 2009. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161, 449–459. https://doi.org/ 10.1007/s00442-009-1400-3.

Liu, M., Cen, Y., Wang, C., Gu, W., Bowler, P., Wu, D., Zhang, L., Jiang, G., Beysens, D., 2020. Foliar uptake of dew in the sandy ecosystem of the Mongolia Plateau: A life- sustaining and carbon accumulation strategy shared differently by C3 and C4 grasses. Agric. For. Meteorol. 287, 107941. https://doi.org/10.1016/j.agrformet.2020.107941.

Ma, Q., Zhang, M., Wang, S., Wang, Q., Liu, W., Li, f., Chen, F., 2014. An investigation of moisture sources and secondary evaporation in Lanzhou, Northwest China. Environ. Earth Sci. 71, 3375–3385. https://doi.org/10.1007/s12665-013-2728-x.

Madeira, A.C., Kim, K.S., Taylor, S.E., Gleason, M.L., 2002. A simple cloud-based energy balance model to estimate dew. Agric. For. Meteorol. 111, 55–63. https://doi.org/10.1016/S0168-1923(02)00004-7.

Maestre-Valero, J.F., Martin-Gorriz, B., Martínez-Alvarez, V., 2015. Dew condensation on different natural and artificial passive surfaces in a semiarid climate. J. Arid Environ. 116, 63−70. https://doi.org/10.1016/j.jaridenv.2015.02.002.

Martin, C.E., von Willert, D.J., 2000. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in South Africa. Plant Biol. 2, 229−242. https://doi.org/10.1055/s-2000-9163.

Meng, Y., Wen, X., 2016. Characteristics of dew events in an arid artificial oasis cropland and a sub-humid cropland in China. J. Arid Land 8 (3), 399−408. https://doi.org/10.1007/s40333-016-0006-y.

Schilfgaarde, J.V., 1994. Irrigation  a blessing or a curse. Agric. Water Manag. 25, 203−219. https://doi.org/10.1016/0378-3774(94)90061-2.

Sentelhas, P.C., Marta, A.D., Orlandini, S., Santos, E.A., Gillespie, T., Gleason, M.L., 2008. Suitability of relative humidity as an estimator of leaf wetness duration. Agric. For. Meteorol. 148, 392−400. https://doi.org/10.1016/j.agrformet.2007.09.011.

Tomaszkiewicz, M., Abou Najm, M., Beysensm D., Alameddine, I., Bou Zeid, E., El-Fadel, M., 2016. Projected climate change impacts upon dew yield in the Mediterranean basin. Sci. Total Environ. 566–567:1339–48. https://doi.org/10.1016/j.scitotenv.2016.05.195.

Tomaszkiewicz, M., Najm, M.A., Zurayk, R., El-Fadel, M., 2017. Dew as an adaptation measure to meet water demand in agriculture and reforestation. Agric. For. Meteorol. 232, 411−421. https://doi.org/10.1139/er-2015-0035.

Uclés, O., Villagarcía, L., Moro, M.J., Canton, Y., Domingo, F., 2014. Role of dewfall in the water balance of a semi-arid coastal steppe ecosystem. Hydrol. Process. 28, 2271−2280. https://doi.org/10.1002/hyp.9780.

Vuollekoski, H., Vogt, M., Sinclair, V.A., Duplissy, V.A., Duplissy, J., Järvinen, H., Kyrö, E.M., Makkonen, R., Petäjä, T., Prisle, N.L., Räisänen, P., Sipiliä, M., Ylhäisi, J., Kulmala, M., 2015. Estimates of global dew collection potential on artificial surfaces. Hydrol. Earth Syst. Sci. 19, 601−613. https://doi.org/10.5194/hess-19-601-2015.

Wang, B., Wu, Z., Li, J., Liu, J., Chang, C., Ding, Y., Wu, G., 2008. How to measure the strength of the East Asian monsoon. J. Clim. 21, 4449−4463. https://doi.org/10.1175/2008JCLI2183.1.

Yasutake, D., Mori, M., Kitano, M., Nomiyama, R., Miyoshi, Y., Hisaeda, D., Cho, H., Tagawa, K., Wu, Y., Wang, W., 2015. Night-time leaf wetting process and its effect on the morning humidity gradient as a driving force of transpirational water loss in semiarid cornfield. Biologia 70 (11), 1485–1489. https://doi.org/10.1515/biolog-2015-0175.

Yasutake, D., Yokoyama, G., Maruo, K., Wu, Y., Wang, W., Mori, M., Kitano, M., 2018. Analysis of leaf wetting effects on gas exchange on corn using a whole-plant chamber system. Plant Soil Environ. 54, 233–239. https://doi.org/10.17221/186/2018-PSE.

Yokoyama, G., Yasutake, D., Tanizaki, K., Kitano, M., 2019. Leaf wetting mitigates midday depression of photosynthesis in tomato plants. Photosynthetica 57 (3), 740–747. https://doi.org/10.32615/ps.2019.088.

Zangvil, A., 1996. Six years of dew observation in the Negev Desert, Israel. J. Aird Environ. 32 361–371. https://doi.org/10.1006/jare.1996.0030.

Zhang, Q., Wang, S., Yang, F., Yue, P., Yao, T., Wang, W., 2015. Characteristics of dew formation and distribution, and its contribution to the surface water budget in a semiarid region in China. Bound.-Layer Meteorol. 154 (2), 317–331. https://doi.org/10.1007/s10546-014-9971-x.

Zhang, Q., Wang, S., Yue, P., Wang, S., 2019. Variation characteristics of non-rainfall water and its contribution to crop water requirements in China’s summer monsoon transition zone. J. Hydrol. 578, 124039. https://doi.org/10.1016/j.jhydrol.2019.124039.

Zhang, Y., Hao, X., Sun, H., Hua, D., Qin, J., 2019. How Populus euphratica utilizes dew in an extremely arid region. Plant Soil 443, 493–508. https://doi.org/10.1007/s11104- 019-04244-1.

Zhuang, Y., Ratcliff, S., 2012. Relationship between dew presence and Bassia dasyphylla plant growth. J. Arid Land 4 (1), 11–18. https://doi.org/10.3724/SP.J.1227.2012.00011.

Zhuang, Y., Zhao, W., 2014. Dew variability in three habitats of a sand dune transect in a desert oasis ecotone, Northwestern China. Hydrol. Process. 28, 1399–1408. https://doi.org/10.1002/hyp.9675.

Zhuang, Y., Zhao, W., 2017. Dew formation and its variation in Haloxylon ammodendron plantations at the edge of a desert oasis, northwestern China. Agric. For. Meteorol. 247, 541–550. https://doi.org/10.1016/j.agrformet.2017.08.032.

Chapter 2

Aguirre-Gutiérrez, C.A., Holwerda, F., Goldsmith, G.R., Delagado, J., Yepez, E., Carbajal, N., Escoto-Rodríguez, M., Arredondo, J.T., 2019. The importance of dew in the water balance of a continental semiarid grassland. J. Arid Environ. 168, 26–35.

Aparecido L.M.T., Miller G.R., Cahill A.T., Moore G.W., 2017. Leafsurface traits and water storage retention affect photosynthetic responses to leaf surface wetness among wet tropical forest and semiarid savanna plants. Tree Physiol. 37, 1285–1300.

Araki, T., Yasutake, D., Wang, W., Wu, Y., Mori, M., Kitano, M., Cho, H., Kobayashi, T., 2011. Saline water seepage from drainage canals induces soil salinization and growth depression in the adjacent cornfields in the upper Yellow River basin. Environ. Control. Biol. 49 (3), 127−132.

Baguskas, S.A., King, J.Y., Ficher, D.T., D’Antonio, C.M., Stille, C.J., 2017. Impact of fog drip versus fog immersion on the physiology of Bishop pine saplings. Funct. Plant Biol. 44, 339−350.

Berry, C.Z., Goldsmith, G.R., 2020. Diffuse light and wetting differently affect tropical tree leaf photosynthesis. New Phytol. 255 (1), 143–153

Cassana, F.F., Dillenburg, L.R., 2013. The periodic wetting of leaves enhances water relations and growth of the long lived conifer Araucaria angustifolia. Plant Biol. 15, 75–83.

Cameron, R.W.F., Harrison-Murray, R.S., Atkinson, C.J., Judd, H.L., 2006. Regulated deficit irrigation -A means to control growth in woody ornamentals. J. Hortic. Sci. Biotech. 81 (3), 435–443.

Corwin, D.L., 2021. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 72, 842–862.

Dawson, T.E., Goldsmith, G.R., 2018. The value of wet leaves. New Phytol. 219, 1156–1169.

Eller, C.B., Lima, A.L., Oliveira, R.S., 2013. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytol. 199, 151–162.

Eller, C.B., Lima, A.L., Oliveira, R.S., 2017. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytol. 211, 489–501.

Fischer, G., Tubiello, F.N., van Velthuizen, H., Wiberg, D.A., 2007. Climate change impacts on irrigation water requirements: Effects of mitigation, 1999–2080. Technol. Forecast. Soc. Change 74, 1083–1107.

Gerlein-Safdi, C., Koohafkan, M.C., Chung, M., Rockwell, F.E., Thompson, S., Caylor, K.K., 2018. Dew deposition suppresses transpiration and carbon uptake in leaves. Agric. For. Meteorol. 259, 305–316.

Guzmán-Delgado, P., Earles, J. M., Zwieniecki, M.A., 2017. Insight into the physiological role of water absorption via the leaf surface from a rehydration kinetics perspective. Plant Cell Environ. 41, 1886–1894.

Hanba, Y.T., Moriya, A., Kimura, K., 2004. Effect of leaf surface wetness and wettability on photosynthesis in bean and pea. Plant Cell Environ. 27, 413–421.

Huang, J., Yu, H., Guan, X., Wang, G., Guo, R., 2016. Accelerated dryland expansion under climate change. Nat. Clim. Change. 6, 166–171.

IPCC (2013) Climate Change 2013: The Physical Science Basis. I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Contribution of Working Group.

Ishibashi, M., Terashima, I., 1995. Effects of continuous leaf wetness on photosynthesis: adverse aspects of rainfall. Plant Cell Environ. 18, 431– 438.

Jia, Z., Zhao, Z., Zhang, Q., Wu, W., 2019. Dew yield and its influencing factors at the western edge of Gurbantunggut Desert, China. Water, 11, 733.

Jones, H.G., 2004. Irrigation scheduling: advantages and pitfalls of plant-based methods. J. Exp. Bot. 55, 2427–2436.

Lekouch, I., Mileta, M., Muselli, M., Milimouk-Melnytchouk, I., Ŝojat, V., Kabbachi, B., Beysens, D., 2010. Comparative chemical analysis of dew and rain water. Atomos. Res. 95, 224–234.

Maestre-Valero, J.F., Martin-Gorriz, B., Martínez-Alvarez, V., 2015. Dew condensation on different natural and artificial passive surfaces in a semiarid climate. J. Arid Environ. 116, 63−70.

Martin, C.E., von Willert, D.J., 2000. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in South Africa. Plant Biol. 2, 229−242.

Meng, Y., Wen, X., 2016. Characteristics of dew events in an arid artificial oasis cropland and a sub-humid cropland in China. J. Arid Land 8 (3), 399−408.

Limm, E.B., Simonin, K.A., Bothman, A.G., Dawson, T.E. 2009. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161, 449–459.

Nomiyama, R., Ebihara, K., Takata, M., Sakamoto, D., Sago, Y., Yasutake, D., Marui, A., Toshihiko, E., Mori, M., Araki, T., Tagawa, K., Cho, H., Wu, Y., Wang, W., Kitano, M., 2012. Root absorption functions drive salt accumulation in crop fields under desertification Ⅱ. Effects of different plant species. Eco-Engineering 24 (3), 69−76.

Schreel, J.D.M., Van de Wal, B.A.E., Hervé-Fernandez, P., Boeckx, P., Steppe, K., 2019. Hydraulic redistribution of foliar absorbed water causes turgor-driven growth in mangrove seedlings. Plant Cell Environ. 42, 2437−2447.

Shen, Y., Li, S., Chen, Y., Qi, Y., Zhang, S., 2013. Estimation of regional irrigation water requirement and water supply risk in the arid region of northwestern China 1989–2010. Agric. Water Manag. 128, 55−64.

Simonin, K.A., Santiago, L.S., Dawson, T.E., 2009. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant Cell Environ. 32, 882−892.

Stepp, K., Vandegehuchte, M.V., Van de Wal, B.A.E., Hoste, P., Guyot, A., Lovelock, C.E., Lockinggton, D.A., 2018. Direct uptake if canopy rainwater causes turgor-driven growth spurts in the mangrove Avicennia marina. Tree Physiol. 38, 979−991.

Tan, M., Zheng, L., 2017. Different irrigation water requirements of seed corn and field corn in the Heihe River basin. Water, 9, 606.

Tomaszkiewicz, M., Najm, M.A., Zurayk, R., El-Fadel, M., 2017. Dew as an adaptation measure to meet water demand in agriculture and reforestation. Agric. For. Meteorol. 232, 411−421.

Tomaszkiewicz, M., Najm, M.A., Beysens, D., Ala,eddine, I., El-Fadel, M., 2017. Dew as a sustainable non-conventional water resource: a criticul review.

Urrego-Pereira, Y.F., Martínez-Cob, A., Fernández V., Cavero, J., 2013. Daytime sprinkler irrigation effects on net photosynthesis of maize and alfalfa. Agron. J. 105 (6), 1515−1528.

Vuollekoski, H., Vogt, M., Sinclair, V.A., Duplissy, V.A., Duplissy, J., Järvinen, H., Kyrö, E.M., Makkonen, R., Petäjä, T., Prisle, N.L., Räisänen, P., Sipiliä, M., Ylhäisi, J., Kulmala, M., 2015. Estimates of global dew collection potential on artificial surfaces. Hydrol. Earth Syst. Sci. 19, 601−613.

Wang W., Kobayashi, T., Yasutake, D., Kitano, M., Cho, H., Araki T., Yoshikoshi, H., 2008. Experiments on the control of salinity and sodicity in surface-irrigated fields in the upper Yellow River valley (Ⅰ). Objectives and methodology. J. Fac. Agric. Kyushu Univ. 53 (1), 251−256.

Yasutake, D., Araki, T., Wang, W., Kobayashi, T., Cho, H., Mori, M., Kitano, M., 2009. Analysis of salts transport affected by root absorption capacity in surface-irrigated fields in the upper Yellow River basin. Biologia 64 (3), 570−574.

Yasutake, D., Mori, M., Kitano, M., Nomiyama, R., Miyoshi, Y., Hisaeda, D., Cho, H., Tagawa, K., Wu, Y., Wang, W., 2015. Night-time leaf wetting process and its effect on the morning humidity gradient as a driving force of transpirational water loss in semiarid cornfield. Biologia 70 (11), 1485–1489.

Yasutake, D., Yokoyama, G., Maruo, K., Wu, Y., Wang, W., Mori, M., Kitano, M., 2018. Analysis of leaf wetting effects on gas exchange on corn using a whole-plant chamber system. Plant Soil Environ. 54, 233–239.

Yokoyama, G., Yasutake, D., Tanizaki, K., Kitano, M., 2019. Leaf wetting mitigates midday depression of photosynthesis in tomato plants. Photosynthetica 57 (3), 740–747.

Yoshikoshi, H., Kobayashi, T., Wang, W., Yasutake D., 2009. A characteristic feature of diurnal air temperature variation in the upper Yellow River valley in a semiarid region. J. Agric. Meteorol. 65 (2), 215–219.

Zhang, Q., Wang, S., Yang, F., Yue, P., Yao, T., Wang, W., 2015. Characteristics of dew formation and distribution, and its contribution to the surface water budget in a semiarid region in China. Bound.-Layer Meteorol. 154 (2), 317–331.

Zhang, Q., Wang, S., Ping, Y., Wang, S., 2019. Variation characteristics of non-rainfall water and its contribution to crop water requirements in China’s summer monsoon transition zone. J. Hydrol. 578, 124039.

Zhang, Y., Hao, X., Sun, H., Hua, D., Qin, J., 2019. How Populus euphratica utilizes dew in an extremely arid region. Plant Soil 443, 493–508.

Zhuang, Y., Ratcliff, S., 2012. Relationship between dew presence and Bassia dasyphylla plant growth. J. Arid Land 4 (1), 11–18.

Zhuang, Y., Zhao, W., 2014. Dew variability in three habitats of a sand dune transect in a desert oasis ecotone, Northwestern China. Hydrol. Process. 28, 1399–1408.

Zhuang, Y., Zhao, W., 2017. Dew formation and its variation in Haloxylon ammodendron plantations at the edge of a desert oasis, northwestern China. Agric. For. Meteorol. 247, 541–550.

Chapter 3

Aparecido, L.M.T., Miller, G.R., Cahill, A.T., Moore, G.W., 2017. Leaf surface traits and water storage retention affect photosynthetic responses to leaf surface wetness amount wet tropical forest and semiarid savanna plants. Tree Physiol. 37, 1285–1300.

Baguskas, S.A., Clemesha, R.E.S., Loik, M.E., 2018. Coastal low cloudiness and fog enhance crop water use efficiency in a California agricultural system. Agric. For. Meteorol. 252, 109–120.

Bernacchi, C. J., Singsaas, E.L., Pimentel, C., Portis Je., A. R., Long, S.P. 2001. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24, 253–259. https://doi: 10.1046/j.1365-3040.2001.00668.x

Bernacchi, C.J., Pimentelm C., Long, S.P. 2003. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ. 26, 1419–1430. https://doi: 10.1046/j.0016-8025.2003.01050.x

Berry, C.Z., Emery, N.C., Gotsch, S.G., Goldsmith, G.R., 2019. Foliar water uptake: Processes, pathways, and integration into plant water budgets. Plant Cell Environ. 42, 410–423.

Berry, C.Z., Goldsmith, G.R., 2020. Diffuse light and wetting differently affect tropical tree leaf photosynthesis. New Phytol. 225, 143–153.

Beysens, D., Muselli, M., Nikolayev, V., Narhe, R., Milimouk, I., 2005. Measurement and modelling of dew in island, coastal and alpine areas. Atomos. Res. 73, 1–22.

Binks, O., Mencuccini, M., Rowkand, L., da Costa, A.C.L., de Carvalho, C.J.R., Bittencourt, P., Eller, C., Teodoro, G.S., Carvalho, E.J.M., Soza, A., Ferreira, L., Vasconcelos, S.S., Oliveira, R., Meir P., 2019. Foliar water uptake in Amazon tres: Evidence and consequences.

Brewer, C.A., Smith, W.K., Vogelmann, T.C. 1991. Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant Cell Environ. 14, 955–962.

Carisse, O., Bourgeois, G., Duthue, J.A., 2000. Influence of temperature and leaf wetness duration on infection of strawberry leaves by Mycosphaerella fragariae. Phytopathology. 90, 1120–1125.

Dawson, T.E., Goldsmith, G.R., 2018. The value of wet leaves. New Phytol. 219, 1156–1169.

Farquhar, G.D., von Caemmerer, S., Berry, J.A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 149, 78–90.

Gerlein-Safdi, C., Koohafkan, M.C., Chung, M., Rockwell, F.E., Thompson, S., Caylor, K.K., 2018. Dew deposition suppresses transpiration and carbon uptake in leaves. Agric. For. Meteorol. 259, 305–316.

Hanba, Y., Moriya, A., Kimura, K., 2004. Effects of leaf surface wetness and wettability on photosynthesis in bean and pea. Plant Cell Environ. 27, 413–421.

Ishibashi, M., Terashima, I., 1995. Effects of continuous leaf wetness on photosynthesis: adverse aspects of rainfall. Plant Cell Environ. 18, 431–438.

Simonin, K.A., Santiago, L.S., Dawson, T.E., 2009. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant Cell Environ. 32, 882−892.

Steppe, K., Vandegehuchte, M.W., Van de Wal, B.A.E., Hoste, P., Guyot, A., Lovelock, C.E., Lockington, D.A., 2018. Direct uptake of canopy rainwater causes turgor-driven growth spurts in the mangrove Avicennia marina. Tree Physiol. 38, 979–991.

Nomura, K., Takada, A., Kunishige, H., Ozaki, Y., Okayasu, T., Yasutake, D., Kitano, M., 2020. Long-term and continuous measurement of canopy photosynthesis and growth of spinach. Environ. Control Biol. 58, 21–29.

Uddin, W., Serlemitsos, K., Viji, G., 2003. A temperature leaf wetness duration-based model for prediction of gray leaf spot of perennial ryegrass turf. Phytopathology. 93, 336– 343.

Yasutake, D., Mori, M., Kitano, M., Nomiyama, R., Miyoshi, Y., Hisaeda, D., Cho, H., Tagawa, K., Wu, Y., Wang, W., 2015. Night-time leaf wetting process and its effect on the morning humidity gradient as a driving force of transpirational water loss in semiarid cornfield. Biologia 70 (11), 1485–1489. https://doi.org/10.1515/biolog-2015-0175.

Yasutake, D., Yokoyama, G., Maruo, K., Wu, Y., Wang, W., Mori, M., Kitano, M., 2018. Analysis of leaf wetting effects on gas exchange on corn using a whole-plant chamber system. Plant Soil Environ. 54, 233–239. https://doi.org/10.17221/186/2018-PSE.

Yokoyama, G., Yasutake, D., Tanizaki, K., Kitano, M., 2019. Leaf wetting mitigates midday depression of photosynthesis in tomato plants. Photosynthetica 57 (3), 740–747.

Yokoyama, G., Yasutake, D., Wang, W., Wu, Y., Feng, J., Dong, L., Kimura, K., Marui, A., Hirota, T., Kitano, M., Mori, M. 2021. Limiting factor of dew formation changes seasonally in a semiarid crop field of northwest China. Agric. For. Meteorol. 311, 108705.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る