リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Environmental Controls of Diffusive and Ebullitive Methane Emissions at a Subdaily Time Scale in the Littoral Zone of a Midlatitude Shallow Lake」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Environmental Controls of Diffusive and Ebullitive Methane Emissions at a Subdaily Time Scale in the Littoral Zone of a Midlatitude Shallow Lake

Taoka, T. Iwata, H. Hirata, R. Takahashi, Y. Miyabara, Y. Itoh, M. 信州大学 DOI:10.1029/2020JG005753

2022.11.21

概要

Environmental controls on methane (CH4) emission from lakes are poorly understood at subdaily time scales due to a lack of continuous data, especially for ebullition. We used a novel technique to partition eddy covariance CH4 flux observed in the littoral zone of a midlatitude shallow lake in Japan and examined the environmental controls on diffusion and ebullitive CH4 flux separately at a subdaily time scale in different seasons. Using the high‐frequency data, we investigated how CH4 accumulation in the water and sediment layers alters the dynamics and environmental controls of fluxes. The contribution of ebullitive flux to total flux was 57% on average. Environmental controls of diffusive and ebullitive fluxes known in the literature were confirmed. We further found that the environmental controls were different in different seasons and suggested that additional consideration of CH4 accumulation could explain the variability. The transfer of accumulated dissolved CH4 from the bottom water layer to the surface in summer and the accumulation of dissolved CH4 under surface ice in winter were suggested to be important for explaining the variability of diffusive flux. In summer, a higher ebullitive flux tended to occur following triggers such as a decrease in hydrostatic pressure. In winter, the impact of triggers was not obvious, and a higher ebullitive flux tended to occur in the morning. We suggested that the low CH4 production rate in winter slowed the replenishment of bubbles in the sediment, negating the effect of triggers on ebullition.

この論文で使われている画像

参考文献

Bastviken, D., Cole, J., Pace, M., & Tranvik, L. (2004). Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles, 18, GB4009. https://doi.org/10.1029/2004GB002238

Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., & Enrich‐Prast, A. (2011). Freshwater methane emissions offset the continental carbon sink. Science, 331(6013), 50. https://doi.org/10.1126/science.1196808

Bock, E. J., Hara, T., Frew, N. M., & McGillis, W. R. (1999). Relationship between air‐sea gas transfer and short wind waves. Journal of Geophysical Research, 104(C11), 25821–25831. https://doi.org/10.1029/1999JC900200

Cole, J. J., & Caraco, N. F. (1998). Atmospheric exchange of carbon dioxide in a low‐wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography, 43(4), 647–656. https://doi.org/10.4319/lo.1998.43.4.0647 De Bruin, H. A. R., Kohsiek, W., & Van den Hurk, B. J. J. M. (1993). A verification of some methods to determine the fiuxes of momentum, sensible heat, and water vapor using standard deviation and structure parameter of scalar meteorological quantities. Boundary‐Layer Meteorology, 63(3), 231–257. https://doi.org/10.1007/BF00710461

DelSontro, T., Boutet, L., St‐Pierre, A., Giorgio, P. A., & Prairie, Y. T. (2016). Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnology and Oceanography, 61(S1), S62–S77. https:// doi.org/10.1002/lno.10335

Deshmukh, C., Serca, D., Delon, C., Tardif, R., Demarty, M., Jarnot, C., et al. (2014). Physical controls on CH4 emissions from a newly fiooded subtropical freshwater hydroelectric reservoir: Nam Theun 2. Biogeosciences, 11(15), 4251–4269. https://doi.org/10.5194/bg-11- 4251-2014

Detto, M., & Katul, G. C. (2007). Simplified expressions for adjusting higher‐order turbulent statistics obtained from open path gas ana- lyzers. Boundary‐Layer Meteorology, 122(1), 205–216. https://doi.org/10.1007/s10546-006-9105-1

Detto, M., Verfaillie, J., Anderson, F., Xu, L., & Baldocchi, D. (2011). Comparing laser‐based open‐ and closed‐path gas analyzers to measure methane fiuxes using the eddy covariance method. Agricultural and Forest Meteorology, 151(10), 1312–1324. https://doi.org/ 10.1016/j.agrformet.2011.05.014

Duc, N. T., Crill, P., & Bastviken, D. (2010). Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry, 100(1–3), 185–196. https://doi.org/10.1007/s10533-010-9415-8

Engle, D., & Melack, J. M. (2000). Methane emissions from an Amazon fioodplain lake: Enhanced release during episodic mixing and during falling water. Biogeochemistry, 51(1), 71–90. https://doi.org/10.1023/A:1006389124823

Erkkilä, K. M., Ojala, A., Bastviken, D., Biermann, T., Heiskanen, J. J., Lindroth, A., et al. (2018). Methane and carbon dioxide fiuxes over a lake: Comparison between eddy covariance, fioating chambers, and boundary layer method. Biogeosciences, 15(2), 429–445. https://doi. org/10.5194/bg-15-429-2018

Eugster, W., DelSontro, T., & Sobek, S. (2011). Eddy covariance fiux measurements confirm extreme CH4 emissions from a Swiss hydro- power reservoir and resolve their short‐term variability. Biogeosciences, 8(9), 2815–2831. https://doi.org/10.5194/bg-8-2815-2011

Fechner‐Levy, E. J., & Hemond, H. F. (1996). Trapped methane volume and potential effects on methane ebullition in a northern peatland. Limnology and Oceanography, 41(7), 1375–1383. https://doi.org/10.4319/lo.1996.41.7.1375

Finkelstein, P. L., & Sims, P. F. (2001). Sampling error in eddy covariance fiux measurements. Journal of Geophysical Research, 106(D4), 3503–3509. https://doi.org/10.1029/2000JD900731

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., et al. (2007). Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 129–234). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., et al. (2007). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66(1–4), 161–172. https://doi.org/10.1016/j.jmarsys.2006.03.019

Heiskanen, J. J., Mammarell, I., Haapanala, S., Pumpanen, J., Vesala, T., Macintyre, S., & Ojala, A. (2014). Effects of cooling and internal wave motions on gas transfer coefficients in a boreal lake. Tellus B, 66(1), 22,827. https://doi.org/10.3402/tellusb.v66.22827

Ikenaka, Y., Eun, H., Watanabe, E., & Miyabara, Y. (2005). Sources, distribution, and infiow pattern of dioxins in the bottom sediment of Lake Suwa, Japan. Bulletin of Environmental Contamination and Toxicology, 75(5), 915–921. https://doi.org/10.1007/s00128-005- 0837-2

Itoh, M., Kobayashi, Y., Chen, T. Y., Tokida, T., Fukui, M., Kojima, H., et al. (2015). Effect of interannual variation in winter vertical mixing on CH4 dynamics in a subtropical reservoir. Journal of Geophysical Research: Biogeosciences, 120, 1246–1261. https://doi.org/10.1002/ 2015JG002972

Itoh, M., Kojima, H., Ho, P.‐C., Chang, C.‐W., Chen, T.‐Y., Hsiao, S. S.‐Y., et al. (2017). Integrating isotopic, microbial, and modeling approaches to understand methane dynamics in a frequently disturbed deep reservoir in Taiwan. Ecological Research, 32(6), 861–871. https://doi.org/10.1007/s11284-017-1502-z

Iwata, H., Hirata, R., Takahashi, Y., Miyabara, Y., Itoh, M., & Iizuka, K. (2018). Partitioning eddy‐covariance methane fiuxes from a shallow lake into diffusive and ebullitive fiuxes. Boundary‐Layer Meteorology, 169(3), 413–428. https://doi.org/10.1007/s10546-018-0383-1

Iwata, H., Kosugi, Y., Ono, K., Mano, M., Sakabe, A., Miyata, A., & Takahashi, K. (2014). Cross‐validation of open‐path and closed path eddy‐covariance techniques for observing methane fiuxes. Boundary‐Layer Meteorology, 151(1), 95–118. https://doi.org/10.1007/s10546- 013-9890-2

Iwata, H., Nakazawa, K., Sato, H., Itoh, M., Miyabara, Y., Hirata, R., et al. (2020). Temporal and spatial variations in methane emissions from the littoral zone of a shallow mid‐latitude lake with steady methane bubble emission areas. Agricultural and Forest Meteorology, 295, 108184. https://doi.org/10.1016/j.agrformet.2020.108184

Jammet, M., Crill, P., Dengel, S., & Friborg, T. (2015). Large methane emissions from a subarctic lake during spring thaw: Mechanisms and landscape significance. Journal of Geophysical Research: Biogeosciences, 120, 2289–2305. https://doi.org/10.1002/2015JG003137

Jammet, M., Dengel, S., Kettner, E., Parmentier, F. W., Wik, M., Crill, P., & Friborg, T. (2017). Year‐round CH4 and CO2 fiux dynamics in two contrasting freshwater ecosystems of the subarctic. Biogeosciences, 14(22), 5189–5216. https://doi.org/10.5194/bg-14-5189-2017 Jansen, J., Thornton, B. F., Jammet, M. M., Wik, M., Cortés, A., Friborg, T., et al. (2019). Climate‐sensitive controls on large spring emis- sions of CH4 and CO2 from northern lakes. Journal of Geophysical Research: Biogeosciences, 124, 2379–2399. https://doi.org/10.1029/2019JG005094

Joyce, J., & Jewell, P. W. (2003). Physical controls on methane ebullition from reservoirs and lake. Environmental and Engineering Geoscience, 9(2), 167–178. https://doi.org/10.2113/9.2.167

Knox, S. H., Jackson, R. B., Poulter, B., McNicol, G., Fluet‐Chouinard, E., Zhang, Z., et al. (2019). FLUXNET‐CH synthesis activity: Objectives, observations, and future directions. Bulletin of the American Meteorological Society, 100(12), 2607–2632. https://doi.org/ 10.1175/BAMS-D-18-0268.1

Kormann, R., & Meixner, F. X. (2001). An analytical footprint model for non‐neutral stratification. Boundary‐Layer Meteorology, 99(2), 207–224. https://doi.org/10.1023/A:1018991015119

Liikanen, A., Huttunen, J. T., Murtoniemi, T., Tanskanen, H., Väisänen, T., Silvola, J., et al. (2003). Spatial and seasonal variation in greenhouse gas and nutrient dynamics and their interactions in the sediments of a boreal eutrophic lake. Biogeochemistry, 65(1), 83–103. https://doi.org/10.1023/A:1026070209387

Liu, L., Sotiri, K., Dück, Y., Hilgert, S., Ostrovsky, I., Uzhansky, E., et al. (2019). The control of sediment gas accumulation on spatial distribution of ebullition in Lake Kinneret. Geo‐Marine Letters, 40. https://doi.org/10.1007/s00367-019-00612-z

Liu, L., Xu, M., Li, R., & Shao, R. (2017). Timescale dependence of environmental controls on methane effiux from Poyang Hu, China. Biogeosciences, 14(8), 2019–2032. https://doi.org/10.5194/bg-14-2019-2017

MacIntyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., & Miller, S. (2010). Buoyancy fiux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters, 37, L24604. https://doi.org/10.1029/2010GL044164

Magen, C., Lapham, L. L., Pohlman, J. W., Marshall, K., Bosman, S., Casso, M., & Chanton, J. P. (2014). A simple headspace equilibration method for measuring dissolved methane. Limnology and Oceanography: Methods, 12(9), 637–650. https://doi.org/10.4319/ lom.2014.12.637

Mahrt, L. (1998). Flux sampling errors for aircraft and towers. Journal of Atmospheric and Oceanic Technology, 15(2), 416–429. https://doi. org/10.1175/1520-0426(1998)015<0416:FSEFAA>2.0.CO;2

McDermitt, D., Burba, G., Xu, L., Anderson, T., Komissarov, A., Riensche, B., et al. (2011). A new low‐power, open‐path instrument for measuring methane fiux by eddy covariance. Applied Physics B, 102(2), 391–405. https://doi.org/10.1007/s00340-010-4307-0

Natchimuthu, S., Sundgren, I., Gålfalk, M., Klemedtsson, L., Crill, P., Danielsson, Å., & Bastviken, D. (2016). Spatio‐temporal variability of lake CH4 fiuxes and its infiuence on annual whole lake emission estimates. Limnology and Oceanography, 61(S1), S13–S26. https://doi. org/10.1002/lno.10222

Park, H., Iwami, C., Watanabe, M. F., Harada, K., Okino, T., & Hayashi, H. (1998). Temporal variabilities of the concentrations of intra‐ and extracellular microcystin and toxic microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991‐1994). Environmantal Toxicology and Water Quality, 13(1), 61–72. https://doi.org/10.1002/(SICI)1098-2256(1998)13:1<61::AID-TOX4>3.0.CO;2-5

Podgrajsek, E., Sahlée, E., Bastviken, D., Holst, J., Lindroth, A., Tranvik, L., & Rutgersson, A. (2014). Comparison of fioating chamber and eddy covariance measurements of lake greenhouse gas fiuxes. Biogeosciences, 11(15), 4225–4233. https://doi.org/10.5194/bg-11-4225- 2014

Podgrajsek, E., Sahlée, E., Bastviken, D., Natchimuthu, S., Kljun, N., Chmiel, H. E., et al. (2016). Methane fiuxes from a small boreal lake measured with the eddy covariance method. Limnology and Oceanography, 61(S1), S41–S50. https://doi.org/10.1002/lno.10245

Podgrajsek, E., Sahlée, E., & Rutgersson, A. (2014). Diurnal cycle of lake methane fiux. Journal of Geophysical Research: Biogeosciences, 119, 236–248. https://doi.org/10.1002/2013JG002327

Powers, S. M., & Hampton, S. E. (2016). Winter limnology as a new frontier. Limnology and Oceanography Bulletin, 25(4), 103–108. https:// doi.org/10.1002/lob.10152

Rey‐Sanchez, A. C., Morin, T. H., Stefanik, K. C., Wrighton, K., & Bohrer, G. (2018). Determining total emissions and environmental drivers of methane fiux in a Lake Erie estuarine marsh. Ecological Engineering, 114(15), 7–15. https://doi.org/10.1016/j. ecoleng.2017.06.042

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., et al. (2016). The global methane budget 2000–2012. Earth System Science Data, 8(2), 697–751. https://doi.org/10.5194/essd-8-697-2016

Schotanus, P., Nieuwstadt, F. T. M., & de Bruin, H. A. R. (1983). Temperature measurement with a sonic anemometer and its application to heat and moisture fiuxes. Boundary‐Layer Meteorology, 26(1), 81–93. https://doi.org/10.1007/BF00164332

Schubert, C. J., Diem, T., & Eugster, W. (2012). Methane emissions from a small wind shielded lake determined by eddy covariance, fiux chambers, anchored funnels, and boundary model calculations: A comparison. Environmental Science and Technology, 46(8), 4515–4522. https://doi.org/10.1021/es203465x Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., & Veesala, T. (2016). LAKE 2.0: A model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geoscientific Model Development, 9(5), 1977–2006. https://doi.org/10.5194/gmd-9-1977- 2016

Subin, Z. M., Murphy, L. N., Li, F., Bonfils, C., & Riley, W. J. (2012). Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: Analysis in the Community Earth System Model 1 (CESM1). Tellus A, 64(1), 15,639. https://doi.org/ 10.3402/tellusa.v64i0.15639

Taylor, J. R. (1997). An introduction to error analysis (pp. 1‐327). Mill Valley: University Science Books.

Tedford, E. W., MacIntyre, S., Miller, S. D., & Czikowsky, M. J. (2014). Similarity scaling of turbulence in a temperate lake during fall cooling. Journal of Geophysical Research: Oceans, 119, 4689–4713. https://doi.org/10.1002/2014JC010135

Thebrath, B., Rothfuss, F., Whiticar, M. J., & Conrad, R. (1993). Methane production in littoral sediment of Lake Constance. FEMS Microbiology Ecology, 102(3–4), 279–289. https://doi.org/10.1111/j.1574-6968.1993.tb05819.x

Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, O., Takakai, F., Kagemoto, A., & Hatano, R. (2007). Falling atmospheric pressure as a trigger for methane ebullition from peatland. Global Biogeochemical Cycles, 21, GB2003. https://doi.org/10.1029/2006GB002790

Utsumi, M., Nojiri, Y., Nakamura, T., Nozawa, T., Otsuki, A., & Seki, H. (1998). Oxidation of dissolved methane in a eutrophic, shallow lake: Lake Kasumigaura, Japan. Limnology and Oceanography, 43(3), 471–480. https://doi.org/10.4319/lo.1998.43.3.0471

van de Boer, A., Moene, A. F., Graf, A., Schüttemeyer, D., & Simmer, C. (2014). Detection of entrainment infiuences on surface‐layer measurements and extension of Monin‐Obukov similarity theory. Boundary‐Layer Meteorology, 152(1), 19–44. https://doi.org/10.1007/ s10546-014-9920-8

Varadharajan, C., & Hemond, H. F. (2012). Time‐series analysis of high‐resolution ebullition fiuxes from a stratified, freshwater lake. Journal of Geophysical Research, 117, G02004. https://doi.org/10.1029/2011JG001866 Vickers, D., & Mahrt, L. (1997). Quality control and fiux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, 14(3), 512–526. https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2

Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., & McGillis, W. R. (2009). Advanced in quantifying air‐sea gas exchange and environmental forcing. Annual Review of Marine Science, 1(1), 213–244. https://doi.org/10.1146/annurev.marine.010908.163742

Webb, E. K., Pearman, G. L., & Leuning, R. (1980). Correction of fiux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorological Society, 106(447), 85–100. https://doi.org/10.1002/qj.49710644707

West, W. E., Creamer, K. P., & Jones, S. E. (2016). Productivity and depth regulate lake contributions to atmospheric methane. Limnology and Oceanography, 61(S1), S51–S61. https://doi.org/10.1002/lno.10247

Wik, M., Patrick, M. C., Varner, R. K., & Bastviken, D. (2013). Multiyear measurements of ebullitive methane fiux from three subarctic lakes. Journal of Geophysical Research: Biogeosciences, 118, 1307–1321. https://doi.org/10.1002/jgrg.20103

Wik, M., Thornton, B. F., Bastviken, D., Uhlbäck, J., & Crill, P. M. (2016). Biased sampling of methane release from northen lakes: A problem for extrapolation. Geophysical Research Letters, 43, 1256–1262. https://doi.org/10.1002/2015GL066501

Winslow, L., Read, J., Woolway, R., Brentrup, J., Leach, T., Zwart, J., et al. (2019). Package “rLakeAnalyzer” (pp. 1‐42).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る