リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Vertical profiles of methane concentration above and within the canopy of a temperate Japanese cypress forest」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Vertical profiles of methane concentration above and within the canopy of a temperate Japanese cypress forest

Takahashi, Kenshi Sakabe, Ayaka Kanazawa, Akito Kosugi, Yoshiko 京都大学 DOI:10.1016/j.aeaoa.2021.100143

2021.12

概要

Methane (CH₄) is one of the major greenhouse gases, and therefore its source identification and quantification are quite important. So far water-unsaturated soils of upland forests are usually recognized as sinks, but recent increasing evidence supports tree stems in certain environments can be a source of CH₄, and thereby research on the dynamics of CH₄ in forest ecosystems has entered a new phase. In this study, we measured vertical distributions of CH₄ concentrations within and above a forest canopy to examine how they are influenced by local ecological processes and synoptic-to local-scale atmospheric processes. Profile measurements were conducted using a meteorological tower in a temperate Japanese cypress forest with a 30-min time resolution. Time series data of CH₄ concentrations above the canopy at our site showed occasional spikes relative to background levels, and these spikes corresponded with temporal variations in CO₂ concentrations. Backward trajectory analyses showed that most of the air masses associated with the spikes in CH₄ and CO₂ concentrations had continental origins. Seasonal-mean diurnal properties in CH₄ concentrations above and within the canopy were weaker than those for CO₂ concentrations. It was considered likely that nighttime accumulation of CH₄ in a stable surface layer and its convective diffusion into a mixed layer accounted for the diurnal properties in CH₄, while ecological processes played a major role in the diurnal properties observed in CO₂ levels. Vertical distributions in CH₄ concentration within the canopy showed a monotonic decrease from the canopy to the forest floor, with variations depending on the season. The profiles agreed with soil-atmosphere CH₄ fluxes measured using a closed-chamber method at our site, indicating that the surface soil in upland areas plays a major role for determining the within-canopy distributions of CH₄. Also, it was inferred that at least at our site, CH₄ emissions from stems and leaves, which has become a hot topic over the recent years, was not significant for cypress trees in upland area enough to influence the within-canopy distributions of CH₄ during the study period.

この論文で使われている画像

参考文献

Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., et al., 2004. Evaluated kinetic and photochemical data for atmospheric chemistry: volume 1– gas phase reactions of Ox, HOx, NOx, and SOx, species. Atmos. Chem. Phys. 4 (6), 1461–1738.

Baldocchi, D.D., Hicks, B.B., Meyers, T.P., 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69, 1331–1340.

Barba, J., Bradford, M.A., Brewer, P.E., Bruhn, D., Covey, K., van Haren, J., Megonigal, J. P., Mikkelsen, T.N., Pangala, S.R., Pihlatie, M., 2019. Methane emissions from tree stems: a new frontier in the global carbon cycle. New Phytol. 222, 18–28.

Bey, I., Jacob, D.J., Logan, J.A., Yantosca, R.M., 2001. Asian chemical outflow to the Pacific in spring: origins, pathways, and budgets. J. Geophys. Res. 106 (D19), 23097–23113.

Bousquet, P, Ciais, P, Dlugokencky J, E, et al., 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443, 439–443. https:// doi.org/10.1038/nature05132.

Bowling, D.R., Miller, J.B., Rhodes, M.E., Burns, S.P., Monson, R.K., Baer, D., 2009. Biogeosci. 6, 1311–1324, 2009.

Covey, K.R., Megonigal, J.P., 2018. Methane production and emissions in trees and forests. New Phytol. 222, 35–51.

de Carmo, J.B., Keller, M., Dias, J.D., de Camargo, P.B., Crill, P., 2006. Geophys. Res. Lett. 33, L04809. https://doi.org/10.1029/2005Gl025436.

Eugster, W, Plüss, P, 2010. A fault-tolerant eddy covariance system for measuring CH4 fluxes. Agricultural and Forest Meteorology 150 (6), 841–851. https://doi.org/ 10.1016/j.agrformet.2009.12.008.

Flanagan, L.B., Nikkel, D.J., Scherloski, L.M., Tkach, R.E., Smits, K.M., Selinger, L.B., Rood, S.B., 2021. Multiple processes contribute to methane emission in a riparian cottonwood forest ecosystem. New Phytol. 229, 1970–1982.

Hendriks, D.M.D., Dolman, A.J., van der Molen, M.K., van Huissteden, J., 2008. A compact and stable eddy covariance set-up for methane measurements using off- axis integrated cavity output spectroscopy. Atmos. Chem. Phys. 8, 431–443.

Ishizuka, S., Sakata, S., Ishizuka, K., 2000. Methane oxidation in Japanese forest soils. Soil Biol. Biochem. 32, 769–777. https://doi.org/10.1016/S0038-0717(99)00200-X.

Itoh, M., Ohte, N., Koba, K., 2009. Methane flux characteristics in forest soils under an East Asian monsoon climate. Soil Biol. Biochem. 41, 388–395. https://doi.org/ 10.1016/j.soilbio.2008.12.003.

Kosugi, Y., Takanashi, S., Tanaka, H., Ohkubo, S., Tani, M., Yano, M., Katayama, T., 2007. Evapotranspiration over a Japanese cypress forest. I. Eddy covariance fluxes and surface conductance characteristics for 3 years. J. Hydrol 337, 269–283.

Le Mer, J., Roger, P., 2001. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37, 25–50.

Leckrone, K.J., Hayes, J.M., 1997. Efficiency and temperature dependence of water removal by membrane dryers. Anal. Chem. 69, 911–918.

McMillan, A.M.S., Goulden, M.L., Tyler, S.C., 2007. Stoichiometry of CH4 and CO2 flux in a California rice paddy. J. Geophys. Res. 112, G01008. https://doi.org/10.1029/ 2006JG000198.

Miyata, A., Leuning, R., Thomas, O., Kim, J., Harazono, Y., 2000. Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agric. For. Meteorol. 102, 287–303. https://doi.org/10.1016/S0168-1923(00)00092-7.

Ohkubo, S., Kosugi, Y., 2008. Amplitude and seasonality of storage fluxes for CO2, heat and water vapour in a temperate Japanese cypress forest. Tellus B 60, 11–20. https://doi.org/10.1111/j.1600-0889.2007.00321.x.

Ohkubo, S., Kosugi, Y., Takanashi, S., Mitani, T., Tani, M., 2007. Comparison of the eddy covariance and automated closed chamber methods for evaluating nocturnal CO2 exchange in a Japanese cypress forest. Agric. For. Meteorol. 142, 50–65.

Pitz, S., Megonigal, P., 2017. Temperate forest methane sink diminished by tree emissions. New Phytol. 214, 1432–1439.

Pitz, S.L., Megonigal, J.P., Chang, C.H., Szlavecz, K., 2018. Methane fluxes from tree stems and soils along a habitat gradient. Biogeochemistry 137, 307–320.

Querino, C.A.S., Smeets, C.J.P.P., Vigano, I., Holzinger, R., Moura, V., Gatti, L.V., Martinewski, A., Manzi, A.O., de Araújo, A.C., Ro¨ckmann, T., 2011. Methane flux, vertical gradient and mixing ratio measurements in a tropical forest. Atmos. Chem. Phys. 11, 7943–7953. https://doi.org/10.5194/acp-11-7943-2011.

Reeburgh, W.S., 2006. Global methane biogeochemistry. In: Keeling, R.F. (Ed.), The Atmosphere. Elsevier, Netherland, pp. 65–89.

Rigby, M., Prinn, R.G., Fraser, P.J., Simmonds, P.G., Langenfelds, R.L., Huang, J., Cunnold, D.M., Steele, L.P., Krummel, P.B., Weiss, R.F., O’Doherty, S., Salameh, P.K., Wang, H.J., Harth, C.M., Muhle, J., Porter, L.W., 2008. Renewed growth of atmospheric methane. Geophys. Res. Lett. 35, L22805. https://doi.org/10.1029/ 2008GL036037.

Sakabe, A., Hamotani, K., Kosugi, Y., Ueyama, M., Takahashi, K., Kanazawa, A., Itoh, M., 2012. Measurement of methane flux over an evergreen coniferous forest canopy using a relaxed eddy accumulation system with tuneable diode laser spectroscopy detection. Theor. Appl. Climatol. 109, 39–49. https://doi.org/10.1007/s00704-011- 0564-z.

Sakabe, A., Kosugi, Y., Takahashi, K., Itoh, M., Kanazawa, A., Makita, N., Ataka, M., 2015. One-year of continuous measurements of soil CH4 and CO2 fluxes in a Japanese cypress forest: temporal and spatial variations associated with Asian monsoon rainfall. J. Geophys. Res. Biogeosci. 120, 585–599. https://doi.org/ 10.1002/2014JG002851.

Sakabe, A., Kosugi, Y., Okumi, C., Itoh, M., Takahashi, K., 2016. Impacts of riparian wetlands on the seasonal variations of watershed-scale methane budget in a temperate monsoonal forest. J. Geophys. Res. Biogeosci. 121, 1717–1732. https:// doi.org/10.1002/2015JG003292.

Shirai, T., Machida, T., Matsueda, H., Sawa, Y., Niwa, Y., Maksyutov, S., Higuchi, K., 2012. Relative contribution of transport/surface flux to the seasonal vertical synoptic CO2 variability in the troposphere over Narita. Tellus B 64, 19138. https:// doi.org/10.3402/tellusb.v64i0.19138.

Shoemaker, J.K., Keenan, T.F., Hollinger, D.Y., Richardson, A.D., 2014. Forest ecosystem changes from annual methane source to sink depending on late summer water balance. Geophys. Res. Lett. 42, 673–679.

Simpson, I.J., Edwards, G.C., Thurtell, G.W., den Hartog, G., Newmann, H.H., Staebler, R.M., 1997. Micrometeorological measurements of methane and nitrous oxide exchange above a boreal aspen forest. J. Geophys. Res. 102 (D24), 29331–29341.

Smeets, C.J.P.P., Holzinger, R., Vigano, I., Goldstein, A.H., Ro¨ckmann, T., 2009. Eddy covariance methane measurements at a Ponderosa pine plantation in California. Atmos. Chem. Phys. 9, 8365–8375. https://doi.org/10.5194/acp-9-8365-2009.

Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015.

NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1.

Takahashi, K., Kosugi, Y., Kanazawa, A., Sakabe, A., 2012. Automated closed chamber measurements of methane fluxes from intact leaves and trunk of Japanese cypress. Atmos. Environ. 51, 329–332. https://doi.org/10.1016/j.atmosenv.2012.01.033.

Ueyama, M., Takanashi, S., Takahashi, Y., 2014. Inferring methane fluxes at a larch forest using Lagrangian, Eulerian, and hybrid inverse model. J. Geophys. Res. Biogeosci. 119, 2018–2031. https://doi.org/10.1002/2014JG002716.

Ueyama, M., Yoshikawa, K., Takagi, K., 2018. A cool-temperate young larch plantation as a net methane source - a 4-year continuous hyperbolic relaxed eddy accumulation and chamber measurements. Atmos. Environ. 184, 110–120, 2018.

Wada, A., Matsueda, H., Murayama, S., Taguchi, S., Hirao, S., Yamazawa, H., Moriizumi, J., Tsuboi, K., Niwa, Y., Sawa, Y., 2013. Quantification of emission estimates of CO2, CH4 and CO for East Asia derived from atmospheric radon-222 measurements over the western North Pacific. Tellus B 65, 18037. https://doi.org/ 10.3402/tellusb.v65i0.18037.

Yu, L., Huang, Y., Zhang, W., Li, T., Sun, W., 2017. Methane uptake in global forest and grassland soils from 1981 to 2010. Sci. Total Environ. 607–608, 1163–1172.

参考文献をもっと見る