リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「NOD2 deficiency protects mice from the development of adoptive transfer colitis through the induction of regulatory T cells expressing forkhead box P3」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

NOD2 deficiency protects mice from the development of adoptive transfer colitis through the induction of regulatory T cells expressing forkhead box P3

髙田 隆太郎 近畿大学

2023.01.12

概要

Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular receptor for muramyl dipeptide derived from the intestinal microbiota. Loss-of-function mutations in Nod2 are associated with the development of Crohn's disease, suggesting that NOD2 signaling plays critical roles in the maintenance of intestinal immune homeostasis. Although NOD2 activation prevents the development of short-term experimental colitis, it remains unknown whether the sensitivity to long-term experimental colitis is infl uenced by NOD2. In this study, we explored the roles played by NOD2 in the development of longterm adoptive transfer colitis. Unexpectedly, we found that Rag1 ! /! Nod2 ! /! mice were more resistant to adoptive transfer colitis than Rag1 ! /! mice and had reduced proinfl ammatory cytokine responses and enhanced accumulation of regulatory T cells (Tregs) expressing forkhead box P3 in the colonic mucosa. Prevention of colitis in Rag1 ! /! Nod2 ! /! mice was mediated by TGF-b1 because neutralization of TGF-b1 resulted in the development of more severe colitis due to reduced accumulation of Tregs. Such paradoxical Treg responses in the absence of NOD2 could explain why Nod2 mutations in humans are not suffi cient to cause Crohn's disease.

参考文献

[1] W. Strober, T. Watanabe, NOD2, an intracellular innate immune sensor involved in host defense and Crohn's disease, Mucosal Immunol. 4 (2011) 484e 495, https://doi.org/10.1038/mi.2011.29.

[2] R. Caruso, N. Warner, N. Inohara, G. Nunez, NOD1 and NOD2: signaling, host defense, and infl ammatory disease, Immunity 41 (2014) 898e 908, https:// doi.org/10.1016/j.immuni.2014.12.010.

[3] D.J. Philpott, M.T. Sorbara, S.J. Robertson, K. Croitoru, S.E. Girardin, NOD proteins: regulators of infl ammation in health and disease, Nat. Rev. Immunol. 14 (2014) 9e 23, https://doi.org/10.1038/nri3565.

[4] T. Watanabe, N. Asano, P.J. Murray, K. Ozato, P. Tailor, I.J. Fuss, A. Kitani, W. Strober, Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis, J. Clin. Invest. 118 (2008) 545e 559, https://doi.org/10.1172/JCI33145.

[5] T. Watanabe, N. Asano, G. Meng, K. Yamashita, Y. Arai, T. Sakurai, M. Kudo, I.J. Fuss, A. Kitani, T. Shimosegawa, T. Chiba, W. Strober, NOD2 downregulates colonic infl ammation by IRF4-mediated inhibition of K63-linked polyubiquitination of RICK and TRAF6, Mucosal Immunol. 7 (2014) 1312e 1325, https://doi.org/10.1038/mi.2014.19.

[6] M.J. Bertrand, K. Doiron, K. Labbe, R.G. Korneluk, P.A. Barker, M. Saleh, Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2, Immunity 30 (2009) 789e 801, https://doi.org/10.1016/j.immuni.2009.04.011.

[7] P. Kiesler, I.J. Fuss, W. Strober, Experimental models of infl ammatory bowel diseases, Cell Mol Gastroenterol Hepatol 1 (2015) 154e 170, https://doi.org/ 10.1016/j.jcmgh.2015.01.006.

[8] T. Watanabe, Y. Sadakane, N. Yagama, T. Sakurai, H. Ezoe, M. Kudo, T. Chiba, W. Strober, Nucleotide-binding oligomerization domain 1 acts in concert with the cholecystokinin receptor agonist, cerulein, to induce IL-33-dependent chronic pancreatitis, Mucosal Immunol. 9 (2016) 1234e 1249, https:// doi.org/10.1038/mi.2015.144.

[9] K. Nakamura, A. Kitani, I. Fuss, A. Pedersen, N. Harada, H. Nawata, W. Strober, TGF-beta 1 plays an important role in the mechanism of CD4þ CD25þ regulatory T cell activity in both humans and mice, J. Immunol. 172 (2004) 834e 842, https://doi.org/10.4049/jimmunol.172.2.834.

[10] M. Coccia, O.J. Harrison, C. Schiering, M.J. Asquith, B. Becher, F. Powrie, K.J. Maloy, IL-1 beta mediates chronic intestinal infl ammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(þ ) Th17 cells, J. Exp. Med. 209 (2012) 1595e 1609, https://doi.org/10.1084/ jem.20111453.

[11] P.M. Nguyen, T.L. Putoczki, M. Ernst, STAT3-Activating cytokines: a therapeutic opportunity for infl ammatory bowel disease? J. Interferon Cytokine Res. 35 (2015) 340e 350, https://doi.org/10.1089/jir.2014.0225.

[12] S. Fichtner-Feigl, I.J. Fuss, J.C. Preiss, W. Strober, A. Kitani, Treatment of murine Th1- and Th2-mediated infl ammatory bow el disease with NF-kappa B decoy oligonucleotides, J. Clin. Invest. 115 (2005) 3057e 3071, https://doi.org/ 10.1172/JCI24792.

[13] D.A. Vignali, L.W. Collison, C.J. Workman, How regulatory T cells work, Nat. Rev. Immunol. 8 (2008) 523e 532, https://doi.org/10.1038/nri2343.

[14] J.L. Coombes, K.R. Siddiqui, C.V. Arancibia-Carcamo, J. Hall, C.M. Sun, Y. Belkaid, F. Powrie, A functionally specialized population of mucosal CD103þ DCs induces Foxp3þ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism, J. Exp. Med. 204 (2007) 1757e 1764, https:// doi.org/10.1084/jem.20070590.

[15] M.J. Benson, K. Pino-Lagos, M. Rosemblatt, R.J. Noelle, All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation, J. Exp. Med. 204 (2007) 1765e 1774, https://doi.org/10.1084/jem.20070719.

[16] S.M.N. Udden, L. Peng, J.L. Gan, J.M. Shelton, J.S. Malter, L.V. Hooper, M.H. Zaki, NOD2 suppresses colorectal tumorigenesis via downregulation of the TLR pathways, Cell Rep. 19 (2017) 2756e 2770, https://doi.org/10.1016/ j.celrep.2017.05.084.

[17] A. Amendola, A. Butera, M. Sanchez, W. Strober, M. Boirivant, Nod2 defi ciency is associated w ith an increased mucosal immunoregulatory response to commensal microorganisms, Mucosal Immunol. 7 (2014) 391e 404, https:// doi.org/10.1038/mi.2013.58.

[18] A. Butera, M. Di Paola, L. Pavarini, F. Strati, M. Pindo, M. Sanchez, D. Cavalieri, M. Boirivant, C. De Filippo, Nod2 defi ciency in mice is associated w ith microbiota variation favouring the expansion of mucosal CD4þ LAPþ regulatory cells, Sci. Rep. 8 (2018) 14241, https://doi.org/10.1038/s41598-018- 32583-z.

[19] P.R. de Souza, F.R. Guimaraes, H. Sales-Campos, G. Bonfa, V. Nardini, J.E.L. Chica, W.M. Turato, J.S. Silva, D.S. Zamboni, C.R.B. Cardoso, Absence of NOD2 receptor predisposes to intestinal infl ammation by a deregulation in the immune response in hosts that are unable to control gut dysbiosis, Immunobiology 223 (2018) 577e 585, https://doi.org/10.1016/ j.imbio.2018.07.003.

[20] E. Bettelli, Y. Carrier, W. Gao, T. Korn, T.B. Strom, M. Oukka, H.L. Weiner, V.K. Kuchroo, Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells, Nature 441 (2006) 235e 238, https://doi.org/10.1038/nature04753.

[21] M. Economou, T.A. Trikalinos, K.T. Loizou, E.V. Tsianos, J.P. Ioannidis, Differential effects of NOD2 variants on Crohn's disease risk and phenotype in diverse populations: a metaanalysis, Am. J. Gastroenterol. 99 (2004) 2393e 2404, https://doi.org/10.1111/j.1572-0241.2004.40304.x .

[22] J.P. Hugot, I. Zaccaria, J. Cavanaugh, H. Yang, S. Vermeire, M. Lappalainen, S. Schreiber, V. Annese, D.P. Jewell, E.V. Fow ler, S.R. Brant, M.S. Silverberg, J. Cho, J.D. Rioux, J. Satsangi, M. Parkes, I.B.D.I.G. Consortium, Prevalence of CARD15/NOD2 mutations in Caucasian healthy people, Am. J. Gastroenterol. 102 (2007) 1259e 1267, https://doi.org/10.1111/j.1572-0241.2007.01149.x .

[23] N.A. Kennedy, C.A. Lamb, S.H. Berry, A.W. Walker, J. Mansfi eld, M. Parkes, R. Simpkins, M. Tremelling, S. Nutland, U.I.G. Consortium, J. Parkhill, C. Probert, G.L. Hold, C.W. Lees, The impact of NOD2 variants on fecal microbiota in crohn's disease and controls without gastrointestinal disease, Infl amm. Bowel Dis. 24 (2018) 583e 592, https://doi.org/10.1093/ibd/izx061.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る