リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Regeneration of emphysematous lungs using gelatin sheets that release basic fibroblast growth factor」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Regeneration of emphysematous lungs using gelatin sheets that release basic fibroblast growth factor

大月 康弘 香川大学 DOI:10.1007/s00595-022-02465-z

2022.03.24

概要

Purpose: Basic fibroblast growth factor (bFGF) induces regeneration and neovascularization of the lungs. We conducted this study to demonstrate the regeneration of emphysematous lungs achieved by gelatin sheets that slowly release bFGF into the visceral pleura in a canine model.
Methods: Porcine pancreatic elastase was used to induce bilateral lower lobe pulmonary emphysema in dogs. Slow-release bFGF gelatin sheets were attached to the visceral pleura of the left lower lobe via thoracotomy. The subjects were divided into two groups: one treated with gelatin sheets containing slow-release bFGF (bFGF+ group, n = 5), and the other, treated with only gelatin sheets (bFGF- group, n = 5). The subjects were euthanized after 28 days and histologic lung assessment was performed. The results were evaluated in terms of the mean linear intercept (MLI) and microvessel count.
Results: The MLI was significantly shorter in the bFGF+ group than in the bFGF- group; (110.0 ± 24.38 vs. 208.9 ± 33.08 μm; P = 0.0006). The microvessel count was not significantly different between the bFGF+ and bFGF- groups (12.20 ± 3.007 vs. 5.35 ± 2.3425; P = 0.075); however, it was significantly higher in the bFGF-attached lungs than in the emphysema group (12.20 ± 3.007 vs. 4.57 ± 0.8896; P = 0.012).
Conclusions: Attaching gelatin sheets with slow-release bFGF to the visceral pleura induced lung regeneration and vascularization in a canine pulmonary emphysema model.

参考文献

1. World Health Organization. The top 10 causes of death, https:// www.who.int/news-room/fact-sheets/detai l/the-top-10-causes-of- death (October 3, 2021 date last Accessed).

2. Young KA, Dilling DR The future of lung transplantation. Chest.2019;155:465-73.

3. Fishman A, Martinez F, Naunheim K, Piantadosi S, Wise R, Ries A, et al.A randomized trial comparing lung-volume-reductidn surgery with medical therapy for severe emphysema. N Engl J Med. 2003;348:2059-73.

4. Ciccone AM, Meyers BF, Guthrie TJ, Davis GE, Yusen RD, Lefrak SS, et al. Long-term outcome of bilateral lung volume reduction in 250 consecutive patients with emphysema. J Thorac Cardiovasc Surg. 2003;125:513-25.

5. Yusen RD, Lefrak SS, Gierada DS, Davis GE, Meyers BF, Patter­ son GA, et al.A prospective evaluation of lung volume reduction surgery in 200 consecutive patients. Chest. 2003;123:1026-37.

6. Stolk J, Stockley RA, Stoel BC, Cooper BG, Piitulainen E, Seer- sholm N, et al. Randomised controlled trial for emphysema with a selective agonist of the gamma-type retinoic acid receptor. Eur Respir J, 2012;40:306-12.

7. Weiss DJ, CasabuK R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 2013;143:1590-8.

8. Bikfalvi A, Klein S, Pintucci G, Rifkin DB. Biological roles of fibroblast growth factor-2. Endocr Rev.1997;18:26-45.

9. Evans MJ, Fanucchi MV, Van Winkle LS, Baker GL, Murphy AE, Nishio SJ, et al. Fibroblast growth factop2 during postnatal devel­ opment of the tracheal basement membrane zone. Am J Physiol Lung Cell Mol Physiol.2002;283:L1263-70.

10. Kawago M, Yoshimasu T, Tabata Y, Yamamoto M, Hirai Y, Kinoshita T, et al. Intrapleural administration of gelatin-embed­ ded, sustained-re lease basic fibroblast growth foctor for the regen­ eration of emphysematous lungs in rats. J Thorac Cardiovasc Surg. 2014;147:1644-9. ヽ

11. Kim YS, Hong G, Kim DH, Kim YM, Kim YK, Oh YM, et al. The role ofFGF-2 in smoke-induced emphysema and the therapeutic potential of recombinant FGF-2 in patients with COPD. Exp Mol Med. 2018;50:150.

12. Igai H, Chang SS, Gotoh M, Yamamoto Y, Yamamoto M, Tabata Y, et al. Tracheal cartilage regeneration and new bone formation by slow release of bone morphogenetic protein (BMP)-2. ASA1OJ. 2008;54:104-8.

13. Okamoto T, Yamamoto Y, Gotoh M, Huang CL, Nakamura T, Shimizu Y, et al. Slow release of bone morphogenetic protein 2 from a gelatin sponge to promote regeneration of tracheal cartilage in a canine model. J Thorac Cardiovasc Surg. 2004;127:329-34.

14. Igai H, Yamamoto Y, Chang SS, Yamamoto M, Tabata Y, Yokomise H. Tracheal cartilage regeneration by slow release of basic fibroblast growth factor from a gelatin sponge. J Thorac Cardiovasc Surg. 2007;134:170-5.

15. Misaki N, Yamamoto Y, Okamoto T, Chang SS, Igai H, Gotoh M, et al. Intra-thoracic fibrous tissue induction by polylactic acid and epsilon-caprolactone copolymer cubes, with or without slow release of basic fibroblast growth factor. Eur J Cardiothorac Surg. 2007;32:761-5.

16. Mori N, Gotoh M, Chang SS, Igai H, Misaki N, Yamamoto Y, et al. Reconstruction of emphysematous lung tissue using slowly released basic fibroblast growth factor from gelatin microspheres. ASAIO J. 2008;54:622-6.

17. Chang SS, Yokomise H, Matsuura N, Gotoh M, Tabata Y. Novel therapeutic approach for pulmonary emphysema using gelatin microspheres releasing basic fibroblast growth factor in a canine model. Surg Today. 2014;44:1536-41.

18. Topol M, Maslon A. The problem of direct lymph drainage of the bronchopulmonary segments into the mediastinal and hilar lymph nodes. Clin Anat. 2009;22:509-16.

19. Takeda AH, Watanabe Y, Nagata T, Aoki M, Umehara T, Suzuki S, et al. Detection of alternative subpleural lymph flow pathways using indocyanine green fluorescence. Surg Today. 2018;48:640-8.

20. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et aL Multilineage potential of adult human mesen­ chymal stem cells. Science. 1999;284:143-7.

21. Ueda K, Tanaka T, Jinbo M, Yagi T, Li TS, Hamano K. Sutureless pneumostasis using polyglyco lie acid mesh as artificial pleura dun ing video-assisted major pulmonary resection. Ann Thorac Surg. 2007;84:1858-61.

22. Gotoh M, Okamoto T, Yamamoto Y, Liu D, Kameyama K, Hayashi E, et al. Development of a canine model of pulmonary emphysema and imaging of the emphysematous lung wilh infrared thoracoscopy. J Thorac Cardiovasc Surg. 2003;126:1916-21.

23. Tabata Y, Ikada Y. Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different bio­ degradabilities. Biomaterials. 1999;20:2169-75.

24. Yamamoto M, Ikada Y, Tabata Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel.J Biomater Sci PqlymEd. 2001;12:77-88. 一

25. Gillooly M, Lamb D, Farrow AS. New automated technique for assessing emphysema on histological sections. J Clin Pathol. 1991;44:1007-11.

26. Morino S,.Nakamura T, Toba T, Takahashi M, Kushibiki T, Tabata Y, et al. Fibroblast growth factor-2 induces recovery of pulmonary blood flow in canine emphysema models. Chest 2005;128:920-6.

27. Morino S, Toba T, Tao H, Araki M, Shimizu Y> Nakamura T, et al. Fibroblast growth factor-2 promotes recovery of pulmonary function in a canine models of elastase-induced emphysema. Exp Lung Res. 2007;33:15-26.

28. Edelman ER, Nugent MA, Kamovsky MJ. Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition. Proc Natl Acad Sci USA. 1993;90:1513-7.

29. Matsuura N, Go T, Fujiwara A, Nakano T, Nakashima N, Tarumi S, et al. Lymphatic invasion is a cause of local recurrence after wedge resection of primary lung cancer. Gen Thorac Cardiovasc Surg. 2019;67:861-6

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る