リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Laser recovery of grinding-induced subsurface damage in single-crystal silicon (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Laser recovery of grinding-induced subsurface damage in single-crystal silicon (本文)

新津, 敬一郎 慶應義塾大学

2020.03.23

概要

Single-crystal silicon is an indispensable material in the semiconductor industry. Silicon wafers are produced from a single-crystal silicon ingot through a series of processes such as slicing, flattening, etching, grinding, and polishing. These mechanical processes cause subsurface damages, such as amorphous layers, dislocations, and microcracks. The subsurface is defined as the range of volume of material whose characteristics have been changed by a machining process. In order to eliminate subsurface damage, chemo-mechanical polishing (CMP) is generally performed after fine grinding. However, in the wafer manufacturing process, CMP is a time-consuming bottleneck and has poor controllability. To solve this problem, innovative approaches are being explored.

In this study, a nanosecond-pulsed laser was used to irradiate a boron-doped singlecrystal silicon wafer to recover grinding-induced subsurface damage. Laser recovery technology involves selectively melting and recrystallizing the machining-damaged subsurface layers. After laser irradiation, a single-crystal structure is reproduced by epitaxial growth from the undamaged bulk.

However, in order to apply laser recovery technology to the processing of silicon wafers with various depths of subsurface damage, it is crucial to investigate and establish the laser recovery depth, that is, the depth of laser-induced silicon melting and recrystallization. Furthermore, nanoscale surface smoothness is required to improve the surface integrity of a wafer in laser recovery. Therefore, the mechanism of laser recovery is comprehensively investigated by focusing on two aspects: the subsurface layer and the top surface.

To visualize and measure the depth of the laser-melted/recrystallized layer, it is proposed to perform small-angle beveled polishing in pure water followed by KOH etching. This enables direct observation and measurement of the recrystallized region. The results show that the crystallinity and impurity distribution in the recrystallized region changed after laser recovery. Furthermore, the mechanism for change in the impurity distribution is discussed.

The surface flattening behavior and nanostructure formation on a grinded—in particular, rough-grinded—wafer with subsurface damage are studied. This study reveals important correlations between grinding-induced latent subsurface defects, laser peak irradiance, and nanoscale surface topography formation in laser recovery.

Finally, laser recovery is performed on not only a planar surface but also complicated shapes such as wafer edges and notches. Previously, laser irradiation has been performed perpendicularly to a silicon surface, even when the surface is curved, and special systems for controlling the laser’s incident angle and wafer position are needed. In this study, laser irradiation with a fixed stage is proposed, where it is unnecessary to apply the laser beam perpendicular to the surface. The reflection loss and change of laser fluence when irradiating a curved surface are considered, and the damage recovery behavior is investigated. The results demonstrate that, after laser irradiation, the damaged region is recovered to a single-crystal structure with nanometric surface roughness, and the surface hardness is also improved. This study demonstrates that laser recovery is a promising post-grinding process for improving the surface integrity of single-crystal silicon wafers.

この論文で使われている画像

参考文献

[1] B. Morgan, C.M. Waits, J. Krizmanic, R. Ghodssi, Development of a deep silicon phasefresnel lens using gray-scale lithography and deep reactive ion etching, J. Microelectromechanical Syst. 13 (2004) 113–120.

[2] J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, N. Passilly, Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques, Opt. Express. 17 (2009) 6283.

[3] M. Mukaida, J. Yan, Fabrication of hexagonal microlens arrays on single-crystal silicon using the tool-servo driven segment turning method, Micromachines. 8 (2017).

[4] M. Mukaida, J. Yan, Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo, Int. J. Mach. Tools Manuf. 115 (2017) 2–14.

[5] L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, G. Valušis, Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon, Opt. Lett. 42 (2017) 1875.

[6] A.R.A. Manaf, T. Sugiyama, J. Yan, Design and fabrication of Si-HDPE hybrid Fresnel lenses for infrared imaging systems, Opt. Express. 25 (2017) 1202.

[7] A.R. Abdul Manaf, J. Yan, Improvement of form accuracy and surface integrity of SiHDPE hybrid micro-lens arrays in press molding, Precis. Eng. 47 (2017) 469–479.

[8] A.R. Abdul Manaf, J. Yan, Press molding of a Si-HDPE hybrid lens substrate and evaluation of its infrared optical properties, Precis. Eng. 43 (2016) 429–438.

[9] P. Zhou, Y. Yan, N. Huang, Z. Wang, R. Kang, D. Guo, Residual Stress Distribution in Silicon Wafers Machined by Rotational Grinding, J. Manuf. Sci. Eng. 139 (2017) 081012.

[10] J. Yan, T. Asami, H. Harada, T. Kuriyagawa, Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining, Precis. Eng. 33 (2009) 378–386.

[11] P. Zhou, S. Xu, Z. Wang, Y. Yan, R. Kang, D. Guo, A load identification method for the grinding damage induced stress (GDIS) distribution in silicon wafers, Int. J. Mach. Tools Manuf. 107 (2016) 1–7.

[12] J. Yan, T. Asami, H. Harada, T. Kuriyagawa, Crystallographic effect on subsurface damage formation in silicon microcutting, CIRP Ann. - Manuf. Technol. 61 (2012) 131–134.

[13] A.M. Kovalchenko, Y. V. Milman, On the cracks self-healing mechanism at ductile mode cutting of silicon, Tribol. Int. 80 (2014) 166–171.

[14] Y. Jingfei, B. Qian, L. Yinnan, Z. Bi, Formation of subsurface cracks in silicon wafers by grinding, Nami Jishu Yu Jingmi Gongcheng/Nanotechnology Precis. Eng. 1 (2018) 172–179.

[15] The International Academy for Production Engineering, L. Laperrière, G. Reinhart, eds., CIRP Encyclopedia of Production Engineering, 1st ed., Springer-Verlag Berlin Heidelberg, 2014.

[16] Z.J. Pei, G.R. Fisher, J. Liu, Grinding of silicon wafers: A review from historical perspectives, Int. J. Mach. Tools Manuf. 48 (2008) 1297–1307.

[17] H. Ohmori, T. Nakagawa, Analysis of Mirror Surface Generation of Hard and Brittle Materials by ELID (Electronic In-Process Dressing) Grinding with Superfine Grain Metallic Bond Wheels, CIRP Ann. - Manuf. Technol. 44 (1995) 287–290.

[18] J. Yan, S. Sakai, H. Isogai, K. Izunome, Recovery of microstructure and surface topography of grinding-damaged silicon wafers by nanosecond-pulsed laser irradiation, Semicond. Sci. Technol. 24 (2009) 105018.

[19] J. Yan, F. Kobayashi, Laser recovery of machining damage under curved silicon surface, CIRP Ann. - Manuf. Technol. 62 (2013) 199–202.

[20] J. Yan, T. Asami, T. Kuriyagawa, Response of machining-damaged single-crystalline silicon wafers to nanosecond pulsed laser irradiation, Semicond. Sci. Technol. 22 (2007) 392–395.

[21] P.Y. Chen, M.H. Tsai, W.K. Yeh, M.H. Jing, Y. Chang, Investigation of the relationship between whole-wafer strength and control of its edge engineering, Jpn. J. Appl. Phys. 48 (2009).

[22] P.Y. Chen, M.H. Tsai, W.K. Yeh, M.H. Jing, Y. Chang, Relationship between wafer edge design and its ultimate mechanical strength, Microelectron. Eng. 87 (2010) 2065– 2070.

[23] P.Y. Chen, M.H. Tsai, W.K. Yeh, M.H. Jing, Y. Chang, Relationship between wafer fracture reduction and controlling during the edge manufacturing process, Microelectron. Eng. 87 (2010) 1809–1815.

[24] D. Robert, N. Yoshio, eds., Handbook of Semiconductor Manufacturing Technology, 2nd Editio, Taylor & Francis Group, 2007.

[25] R. Doering, Y. Nishi, eds., Handbook of Semiconductor Manufacturing Technology, Second Edi, CRC Press LLC, 2008.

[26] J. Yan, M. Yoshino, T. Kuriagawa, T. Shirakashi, K. Syoji, R. Komanduri, On the ductile machining of silicon for micro electro-mechanical systems (MEMS), optoelectronic and optical applications, Mater. Sci. Eng. A. 297 (2001) 230–234.

[27] J. Yan, K. Syoji, T. Kuriyagawa, H. Suzuki, Ductile regime turning at large tool feed, J. Mater. Process. Technol. 121 (2002) 363–372.

[28] K. Liu, X.P. Li, M. Rahman, K.S. Neo, X.D. Liu, A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers, Int. J. Adv. Manuf. Technol. 32 (2007) 631–637.

[29] P.N. Blake, R.O. Scattergood, Ductile‐Regime Machining of Germanium and Silicon, J. Am. Ceram. Soc. 73 (1990) 949–957.

[30] R.G. Jasinevicius, J.G. Duduch, L. Montanari, P.S. Pizani, Dependence of brittle-toductile transition on crystallographic direction in diamond turning of single-crystal silicon, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226 (2012) 445–458.

[31] S. Goel, X. Luo, A. Agrawal, R.L. Reuben, Diamond machining of silicon: A review of advances in molecular dynamics simulation, Int. J. Mach. Tools Manuf. 88 (2015) 131–164.

[32] T. Nakasuji, S. Kodera, S. Hara, H. Matsunaga, N. Ikawa, S. Shimada, Diamond Turning of Brittle Materials for Optical Components, CIRP Ann. - Manuf. Technol. 39 (1990) 89–92.

[33] T. Shibata, S. Fujii, E. Makino, M. Ikeda, Ductile-regime turning mechanism of singlecrystal silicon, Precis. Eng. 18 (1996) 129–137.

[34] J. Yan, T. Asami, T. Kuriyagawa, Nondestructive measurement of machining-induced amorphous layers in single-crystal silicon by laser micro-Raman spectroscopy, Precis. Eng. 32 (2008) 186–195.

[35] M.B. Cai, X.P. Li, M. Rahman, Characteristics of “dynamic hard particles” in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear, Wear. 263 (2007) 1459–1466.

[36] M.B. Cai, X.P. Li, M. Rahman, Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation, Int. J. Mach. Tools Manuf. 47 (2007) 75–80.

[37] G. Yuri, D.Vladislav, eds., High-Pressure Surface Science and Engineering, Institute of Physics Publishing, 2004.

[38] B. Rosa, P. Mognol, J. Hascoët, Laser polishing of additive laser manufacturing surfaces, J. Laser Appl. 27 (2015) S29102-1–7.

[39] F.E. Pfefferkorn, N.A. Duffie, X. Li, M. Vadali, C. Ma, Improving surface finish in pulsed laser micro polishing using thermocapillary flow, CIRP Ann. - Manuf. Technol. 62 (2013) 203–206.

[40] E. Ukar, A. Lamikiz, L.N. López de Lacalle, D. del Pozo, J.L. Arana, Laser polishing of tool steel with CO2 laser and high-power diode laser, Int. J. Mach. Tools Manuf. 50 (2010) 115–125.

[41] S. Marimuthu, A. Triantaphyllou, M. Antar, D. Wimpenny, H. Morton, M. Beard, Laser polishing of selective laser melted components, Int. J. Mach. Tools Manuf. 95 (2015) 97–104.

[42] C. Nüsser, I. Wehrmann, E. Willenborg, Influence of intensity distribution and pulse duration on laser micro polishing, Phys. Procedia. 12 (2011) 462–471.

[43] C. Ma, M. Vadali, N.A. Duffie, F.E. Pfefferkorn, X. Li, Melt pool flow and surface evolution during pulsed laser micro polishing of Ti6Al4V, ASME 2013 Int. Manuf. Sci. Eng. Conf. Collocated with 41st North Am. Manuf. Res. Conf. MSEC 2013. 1 (2013) 1–8.

[44] T.L. Perry, D. Werschmoeller, X. Li, F.E. Pfefferkorn, N.A. Duffie, Pulsed laser polishing of micro-milled Ti6Al4V samples, J. Manuf. Process. 11 (2009) 74–81.

[45] M. Hatano, S. Moon, M. Lee, K. Suzuki, C.P. Grigoropoulos, Excimer laser-induced temperature field in melting and resolidification of silicon thin films, J. Appl. Phys. 87 (2000) 36–43.

[46] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, H. Kawata, M. Osumi, S. Tsuda, S. Nakano, Y. Kuwano, Enlargement of polysi film grain size by excimer laser annealing and its application to high-performance poly-si thin film transistor, Jpn. J. Appl. Phys. 30 (1991) 3700–3703.

[47] H. Azuma, A. Takeuchi, T. Ito, H. Fukushima, T. Motohiro, M. Yamaguchi, Pulsed KrF excimer laser annealing of silicon solar cell, Sol. Energy Mater. Sol. Cells. 74 (2002) 289–294.

[48] C.H. Kim, I.H. Song, W.J. Nam, M.K. Han, A poly-Si TFT fabricated by excimer laser recrystallization on floating active structure, IEEE Electron Device Lett. 23 (2002) 315–317.

[49] P.M. Smith, P.G. Carey, T.W. Sigmon, Excimer laser crystallization and doping of silicon films on plastic substrates, Appl. Phys. Lett. 70 (1997) 342–344.

[50] J. Dore, D. Ong, S. Varlamov, R. Egan, M.A. Green, Progress in laser-crystallized thinfilm polycrystalline silicon solar cells: Intermediate layers, light trapping, and metallization, IEEE J. Photovoltaics. 4 (2014) 33–39.

[51] G. Fisicaro, A. La Magna, Modeling of laser annealing, J. Comput. Electron. 13 (2014) 70–94.

[52] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong, Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing, Appl. Phys. Lett. 89 (2006) 172111.

[53] R.F. Wood, G.E. Giles, Macroscopic theory of pulsed-laser annealing. I. Thermal transport and melting, Phys. Rev. B. 23 (1981) 2923–2942.

[54] S.F. Lombardo, S. Boninelli, F. Cristiano, G. Fisicaro, G. Fortunato, M.G. Grimaldi, G. Impellizzeri, M. Italia, A. Marino, R. Milazzo, E. Napolitani, V. Privitera, A. La Magna, Laser annealing in Si and Ge: Anomalous physical aspects and modeling approaches, Mater. Sci. Semicond. Process. 62 (2017) 80–91.

[55] O. Nast, A.J. Hartmann, Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon, J. Appl. Phys. 88 (2000) 716–724.

[56] M.O. Thompson, G.J. Galvin, J.W. Mayer, Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation, Phys. Rev. Lett. 52 (1984) 2360–2364.

[57] Z. Yuan, Q. Lou, J. Zhou, J. Dong, Y. Wei, Z. Wang, H. Zhao, G. Wu, Numerical and experimental analysis on green laser crystallization of amorphous silicon thin films, Opt. Laser Technol. 41 (2009) 380–383.

[58] Z. Li, H. Zhang, Z. Shen, X. Ni, Time-resolved temperature measurement and numerical simulation of millisecond laser irradiated silicon, J. Appl. Phys. 114 (2013) 033104.

[59] L. Huang, J. Jin, W. Shi, Z. Yuan, W. Yang, Z. Cao, L. Wang, J. Zhou, Q. Lou, Characterization and simulation analysis of laser-induced crystallization of amorphous silicon thin films, Mater. Sci. Semicond. Process. 16 (2013) 1982–1987.

[60] J. Bonse, J. Krüger, Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon, J. Appl. Phys. 108 (2010).

[61] F. Constache, S. Kouteva-Arguirova, J. Reif, Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation, Appl. Phys. A Mater. Sci. Process. 79 (2004) 1429–1432.

[62] I. Gnilitskyi, V. Gruzdev, N.M. Bulgakova, T. Mocek, L. Orazi, Mechanisms of highregularity periodic structuring of silicon surface by sub-MHz repetition rate ultrashort laser pulses, Appl. Phys. Lett. 109 (2016).

[63] X. Ji, L. Jiang, X. Li, W. Han, Y. Liu, A. Wang, Y. Lu, Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation, Appl. Surf. Sci. 326 (2015) 216–221.

[64] R. Le Harzic, F. Stracke, H. Zimmermann, Formation mechanism of femtosecond laserinduced high spatial frequency ripples on semiconductors at low fluence and high repetition rate, J. Appl. Phys. 113 (2013).

[65] G. Miyaji, M. Hagiya, K. Miyazaki, Excitation of surface plasmon polaritons on silicon with an intense femtosecond laser pulse, Phys. Rev. B. 96 (2017) 1–6.

[66] G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions, Phys. Rev. B - Condens. Matter Mater. Phys. 86 (2012) 1–14.

[67] G.D. Tsibidis, C. Fotakis, E. Stratakis, From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures, Phys. Rev. B - Condens. Matter Mater. Phys. 92 (2015) 1–6.

[68] O. Varlamova, F. Costache, J. Reif, M. Bestehorn, Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light, Appl. Surf. Sci. 252 (2006) 4702–4706.

[69] O. Varlamova, J. Reif, S. Varlamov, M. Bestehorn, The laser polarization as control parameter in the formation of laser-induced periodic surface structures: Comparison of numerical and experimental results, Appl. Surf. Sci. 257 (2011) 5465–5469.

[70] M. Hongo, S. Matsuo, Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate, Appl. Phys. Express. 9 (2016) 7–10.

[71] M. Mezera, G.R.B.E. Römer, Model based optimization of process parameters to produce large homogeneous areas of laser-induced periodic surface structures, Opt. Express. 27 (2019) 6012.

[72] S. Sarbada, Z. Huang, Y.C. Shin, X. Ruan, Low-reflectance laser-induced surface nanostructures created with a picosecond laser, Appl. Phys. A Mater. Sci. Process. 122 (2016) 1–10.

[73] A. Talbi, S. Kaya-Boussougou, A. Sauldubois, A. Stolz, C. Boulmer-Leborgne, N. Semmar, Laser-induced periodic surface structures formation on mesoporous silicon from nanoparticles produced by picosecond and femtosecond laser shots, Appl. Phys. A Mater. Sci. Process. 123 (2017) 1–7.

[74] M.S. Trtica, B.M. Gakovic, B.B. Radak, D. Batani, T. Desai, M. Bussoli, Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses, Appl. Surf. Sci. 254 (2007) 1377–1381.

[75] B.K. Nayak, K. Sun, C. Rothenbach, M.C. Gupta, Self-organized 2D periodic arrays of nanostructures in silicon by nanosecond laser irradiation, Appl. Opt. 50 (2011) 2349.

[76] P. Nürnberger, H.M. Reinhardt, H.C. Kim, E. Pfeifer, M. Kroll, S. Müller, F. Yang, N.A. Hampp, Orthogonally superimposed laser-induced periodic surface structures (LIPSS) upon nanosecond laser pulse irradiation of SiO 2 /Si layered systems, Appl. Surf. Sci. 425 (2017) 682–688.

[77] S. Watanabe, Y. Yoshida, S. Kayashima, S. Yatsu, M. Kawai, T. Kato, In situ observation of self-organizing nanodot formation under nanosecond-pulsed laser irradiation on Si surface, J. Appl. Phys. 108 (2010).

[78] M. Weizman, N.H. Nickel, I. Sieber, B. Yan, Laser-induced self-organization in silicon-germanium thin films, J. Appl. Phys. 103 (2008).

[79] Y. Yoshida, K. Oosawa, J. Wajima, S. Watanabe, Y. Matsuo, T. Kato, Nanosecond pulsed laser induced self-organized nano-dots patterns on GaSb surface, Appl. Surf. Sci. 307 (2014) 24–27.

[80] Y. Yoshida, N. Sakaguchi, S. Watanabe, T. Kato, Self-organized two-dimensional vidro-nanodot array on laser-irradiated Si surface, Appl. Phys. Express. 4 (2011).

[81] G.A. Martsinovskiǐ, G.D. Shandybina, D.S. Smirnov, S. V. Zabotnov, L.A. Golovan’, V.Y. Timoshenko, P.K. Kashkarov, Ultrashort excitations of surface polaritons and waveguide modes in semiconductors, Opt. Spectrosc. (English Transl. Opt. i Spektrosk. 105 (2008) 67–72.

[82] P. Schaaf, ed., Laser Processing of Materials, Springe Series in Materials Science, 2010.

[83] W.M. Steen, J. Mazumder, Laser Material Processing, Fourth edi, Springer, 2010.

[84] P.C. Lill, M. Dahlinger, J.R. Köhler, Boron partitioning coefficient above unity in laser crystallized silicon, Materials (Basel). 10 (2017) 189.

[85] G. Fisicaro, K. Huet, R. Negru, M. Hackenberg, P. Pichler, N. Taleb, A. La Magna, Anomalous impurity segregation and local bonding fluctuation in l-Si, Phys. Rev. Lett. 110 (2013) 117801.

[86] H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel, Anisotropic Etching of Crystalline Silicon in Alkaline Solutions, J. Electrochem. Soc. 137 (1990) 3612–3626.

[87] Y.G. Gogotsi, C. Baek, F. Kirscht, Raman microspectroscopy study of processinginduced phase transformations and residual stress in silicon, Semicond. Sci. Technol. 14 (1999) 936–944.

[88] I. Stich, R. Car, M. Parrinello, Bonding and disorder in liquid silicon, Phys. Rev. Lett. 63 (1989) 2240–2243.

[89] J. Sun, R.C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu, M.L. Klein, J.P. Perdew, Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional, Nat. Chem. 8 (2016) 831–836.

[90] R.C. Remsing, M.L. Klein, J. Sun, Dependence of the structure and dynamics of liquid silicon on the choice of density functional approximation, Phys. Rev. B. 96 (2017) 024203.

[91] J.T. Okada, P.H.L. Sit, Y. Watanabe, Y.J. Wang, B. Barbiellini, T. Ishikawa, M. Itou, Y. Sakurai, A. Bansil, R. Ishikawa, M. Hamaishi, T. Masaki, P.F. Paradis, K. Kimura, T. Ishikawa, S. Nanao, Persistence of covalent bonding in liquid silicon probed by inelastic x-ray scattering, Phys. Rev. Lett. 108 (2012) 067402.

[92] N. Jakse, A. Pasturel, Dynamics of liquid and undercooled silicon: An ab initio molecular dynamics study, Phys. Rev. B. 79 (2009) 114206.

[93] T. Morishita, How does tetrahedral structure grow in liquid silicon upon supercooling?, Phys. Rev. Lett. 97 (2006) 165502.

[94] H. Tanaka, Simple view of waterlike anomalies of atomic liquids with directional bonding, Phys. Rev. B. 66 (2002) 064202.

[95] H. Tanaka, Two-order-parameter description of liquids: critical phenomena and phase separation of supercooled liquids, J. Phys. Condens. Matter. 11 (1999) L159–L168.

[96] P. Ganesh, M. Widom, Liquid-liquid transition in supercooled silicon determined by first-principles simulation, Phys. Rev. Lett. 102 (2009) 075701.

[97] N. Jakse, A. Pasturel, Liquid-liquid phase transformation in silicon: Evidence from first-principles molecular dynamics simulations, Phys. Rev. Lett. 99 (2007) 205702.

[98] S. Sastry, C. Austen Angell, Liquid–liquid phase transition in supercooled silicon, Nat. Mater. 2 (2003) 739–743.

[99] H. Kodera, Diffusion Coefficients of Impurities in Silicon Melt, Jpn. J. Appl. Phys. 2 (1963) 212–219.

[100] R.F. Wood, Model for nonequilibrium segregation during pulsed laser annealing, Appl. Phys. Lett. 37 (1980) 302–304.

[101] R. Saha, W.D. Nix, Effects of the substrate on the determination of thin mechanical properties by nanoindentation, Acta Mater. 50 (2002) 23–28.

[102] B. Bhushan, X. Li, Micromechanical and tribological characterization of doped singlecrystal silicon and polysilicon films for microelectromechanical systems devices, J. Mater. Res. 12 (1997) 54–63.

[103] R.Fabbro, P.Peyre, L.Berthe, X.Scherpereel, Physics and applications of laser-shock processing, J. Laser Appl. 10 (1998) 265–279.

[104] L. Berthe, R. Fabbro, P. Peyre, L. Tollier, E. Bartnicki, Shock waves from a waterconfined laser-generated plasma, J. Appl. Phys. 82 (1997) 2826–2832.

[105] S. Steffens, C. Becker, J.-H. Zollondz, A. Chowdhury, A. Slaoui, S. Lindekugel, U. Schubert, R. Evans, B. Rech, Defect annealing processes for polycrystalline silicon thin-film solar cells, Mater. Sci. Eng. B. 178 (2013) 670–675.

[106] W.W. Mullins, R.F. Sekerka, Morphological Stability of a Particle Growing by Diffusion or Heat Flow, J. Appl. Phys. 34 (1963) 323–329.

[107] J. Yan, T. Asami, T. Kuriyagawa, Nondestructive measurement of machining-induced amorphous layers in single-crystal silicon by laser micro-Raman spectroscopy, Precis. Eng. 32 (2008) 186–195.

[108] G. Lucazeau, L. Abello, Micro-Raman analysis of residual stresses and phase transformations in crystalline silicon under microindentation, J. Mater. Res. 12 (1997) 2262–2273.

[109] R.G. Sparks, M.A. Paesler, Micro-Raman analysis of stress in machined silicon and germanium, Precis. Eng. 10 (1988) 191–198.

[110] V. Paillard, P. Puech, M. a. Laguna, P. Temple-Boyer, B. Caussat, J.P. Couderc, B. De Mauduit, Resonant Raman scattering in polycrystalline silicon thin films, Appl. Phys. Lett. 73 (1998) 1718–1720.

[111] Z. Arnaud, ed., Raman imaging, Springer-Verlag Berlin Heidelberg, 2012.

[112] A. Ogura, Y. Kakemura, D. Kosemura, T. Yoshida, M. Masaki, K. Nishida, R. Kawakami, N. Yamamoto, Evaluation of poly-Si thin film crystallized by solid green laser annealing using UV/visible Raman spectroscopy, J. Mater. Sci. Mater. Electron. 19 (2008) 122–126.

[113] Z. Xu, Z. He, Y. Song, X. Fu, M. Rommel, X. Luo, A. Hartmaier, J. Zhang, F. Fang, Topic Review: Application of Raman Spectroscopy Characterization in Micro/NanoMachining, Micromachines. 9 (2018) 361.

[114] J. Kucytowski, K. Wokulska, Lattice parameter measurements of boron doped Si single crystals, Cryst. Res. Technol. 40 (2005) 424–428.

[115] F.M. Ross, J. Tersoff, R.M. Tromp, Ostwald Ripening of Self-Assembled Germanium Islands on Silicon(100), Microsc. Microanal. 4 (1998) 254–263.

[116] Z. Li, B. Lin, W. Sun, X. Zhang, Simultaneous Double Side Grinding of Silicon Wafers: A Further Investigation into Grinding Marks Pattern, 27 (2010) 395–400.

[117] G.J. Pietsch, M. Kerstan, Understanding simultaneous double-disk grinding: Operation principle and material removal kinematics in silicon wafer planarization, Precis. Eng. 29 (2005) 189–196.

[118] H. Wang, X. Liu, Z.M. Zhang, Absorption coefficients of crystalline silicon at wavelengths from 500 nm to 1000 nm, Int. J. Thermophys. 34 (2013) 213–225.

[119] A.C. Tarn, I.K. Pour, T. Nguyen, D. Krajnovich, P. Baumgart, Experimental and theoretical studies of bump formation during laser texturing of ni-p disk substrates, IEEE Trans. Magn. 32 (1996) 3771–3773.

[120] T.D. Bennett, D.J. Krajnovich, C.P. Grigoropoulos, P. Baumgart, A.C. Tam, Marangoni Mechanism in Pulsed Laser Texturing of Magnetic Disk Substrates, J. Heat Transfer. 119 (1997) 589.

[121] H. Huang, J. Yan, Volumetric and timescale analysis of phase transformation in singlecrystal silicon during nanoindentation, Appl. Phys. A. 122 (2016) 607.

[122] A. Kailer, Y.G. Gogotsi, K.G. Nickel, Phase transformations of silicon caused by contact loading, J. Appl. Phys. 81 (1997) 3057–3063.

[123] V. Domnich, Y. Gogotsi, Phase Transformations in Silicon Under Contact Loading, Rev. Adv. Mater. Sci. 3 (2002) 1–36.

[124] D.E. Kim, S.I. Oh, Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation, Nanotechnology. 17 (2006) 2259–2265.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る