リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Investigation of mechanism for microstructural changes in hard-brittle materials during cyclic nanoindentation (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Investigation of mechanism for microstructural changes in hard-brittle materials during cyclic nanoindentation (本文)

香西, 孝司 慶應義塾大学

2021.03.23

概要

Extremely hard-brittle materials are used for a wide range of applications. The quality and service life of products are affected by mechanical properties. In addition, the mechanical properties of hard-brittle materials affect their machining processes; hence, it is imperative to investigate the mechanical properties for the optimization of machining conditions. In particular, owing to the development of ultra-precision machining techniques, mechanical properties on the micron/nanoscale become especially important. Meanwhile, in ultra- precision machining processes, it is difficult to precisely investigate the mechanism of microstructural changes in real time. Therefore, the fundamental analysis of microstructural changes in hard-brittle materials is required.

Nanoindentation is a suitable method for the fundamental analysis of the microstructural changes induced by external forces. Nanoindentation tests permit the accurate investigation of the relationship between loads and material responses by the elimination of error factors compared to real machining processes. Although various nanoindentation studies have investigated microstructural changes, most of them focus on the processes occurring during single nanoindentation. Hence, microstructural changes occurring during cyclic loading/unloading processes, which are similar to situations of real material use and machining processes, have not been sufficiently investigated.

In this study, cyclic nanoindentation tests are performed on representative hard-brittle materials of single-crystal germanium, polycrystalline yttria-stabilized zirconia (YSZ), and amorphous fused silica to narrow the gap and clarify the microstructural changes in hard-brittle materials under repetitive loading/unloading processes. By employing various characterization methods such as cross-sectional observation of indents and load-displacement analysis, new microstructural changes are confirmed, which have not been reported in previous single nanoindentation tests, and the mechanism is clarified.

In the multi-cyclic nanoindentation, where the maximum load on each cycle is constant, of single-crystal Ge, its phase transformation behavior exhibits a strong dependence on the holding load between each indentation cycle. Multi-cyclic nanoindentation with a low holding load promotes phase transformation. In contrast, multi-cyclic nanoindentation with a middle holding load considerably prevents phase transformation. Further increase in the holding load toward the maximum load increases the occurrence of phase transformation.

In case of polycrystalline YSZ, multi-cyclic nanoindentation exhibits location-dependent microstructural changes. Phase transformation is promoted around the indent on unloading processes, whereas beneath the indented surface, grain refinement and the extrusion of the refined layer become dominant. In addition, the diamond-turned surface exhibits cyclic-load- induced fracture due to the spalling of the grain-refinement layer formed by machining processes.

For amorphous fused silica, incremental cyclic nanoindentation, where the maximum load on each cycle increases incrementally, using a sharp indenter promotes brittle fracture via lateral cracking. In addition, some characteristic fractures occur, which are not observed in single indentation, such as secondary spalling far from the indent. The mechanism for such a characteristic brittle fracture is explained.

The mechanism of microstructural changes revealed by multi- and incremental cyclic nanoindentation tests in this study provides new insights into the cyclic-load-induced subsurface damage in hard-brittle materials. This study is expected to help clarify the historical effects related to the subsurface damage mechanism of hard-brittle materials caused by cyclic loads in real material use and precision mechanical processing.

この論文で使われている画像

参考文献

[1] F.Z. Fang, X.D. Zhang, A. Weckenmann, G.X. Zhang, C. Evans, Manufacturing and measurement of freeform optics, CIRP Ann. - Manuf. Technol. 62 (2013) 823–846. https://doi.org/10.1016/j.cirp.2013.05.003.

[2] Y. Kakinuma, Y. Konuma, M. Fukuta, K. Tanaka, Ultra-precision grinding of optical glass lenses with La-doped CeO2 slurry, CIRP Ann. 68 (2019) 345–348. https://doi.org/10.1016/j.cirp.2019.04.089.

[3] B. Jalali, S. Fathpour, Silicon Photonics, J. Light. Technol. 24 (2006) 4600– 4615. https://doi.org/10.1109/JLT.2006.885782.

[4] L. Zhang, A.M. Agarwal, L.C. Kimerling, J. Michel, Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared, Nanophotonics. 3 (2014) 247–268. https://doi.org/10.1515/nanoph-2013-0020.

[5] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants - A review, Prog. Mater. Sci. 54 (2009) 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004.

[6] C. Piconi, G. Maccauro, Zirconia as a ceramic biomaterial, Biomaterials. 20 (1999) 1–25. https://doi.org/10.1016/S0142-9612(98)00010-6.

[7] J. Yan, T. Okuuchi, Chip morphology and surface integrity in ultraprecision cutting of yttria-stabilized tetragonal zirconia polycrystal, CIRP Ann. (2019) 1–4. https://doi.org/10.1016/j.cirp.2019.04.050.

[8] J. Yan, T. Asami, H. Harada, T. Kuriyagawa, Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining, Precis. Eng. 33 (2009) 378–386. https://doi.org/10.1016/j.precisioneng.2008.10.008.

[9] M.S.R.N. Kiran, B. Haberl, J.E. Bradby, J.S. Williams, Nanoindentation of Silicon and Germanium, in: Semicond. Semimetals, 1st ed., Elsevier Inc., 2015: pp. 165–203. https://doi.org/10.1016/bs.semsem.2014.12.002.

[10] J.W. Smail, D.J. Green, M.B. Abrams, Onset of Cone Cracking in Ion- Exchanged Glass, J. Am. Ceram. Soc. 90 (2007) 333–335. https://doi.org/10.1111/j.1551-2916.2006.01409.x.

[11] B. Paliwal, K.T. Ramesh, An interacting micro-crack damage model for failure of brittle materials under compression, J. Mech. Phys. Solids. 56 (2008) 896– 923. https://doi.org/10.1016/j.jmps.2007.06.012.

[12] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564–1583.

[13] T. Sawa, K. Tanaka, Evaluating Performance of Nanoindentation Instruments, 16 (2001).

[14] T.F. Page, W.C. Oliver, C.J. McHargue, The deformation behavior of ceramic crystals subjected to very low load (nano)indentations, J. Mater. Res. 7 (1992) 450–473. https://doi.org/10.1557/JMR.1992.0450.

[15] H. Huang, J. Yan, On the mechanism of secondary pop-out in cyclic nanoindentation of single-crystal silicon, J. Mater. Res. 30 (2015) 1861–1868. https://doi.org/10.1557/jmr.2015.120.

[16] Y.G. Gogotsi, V. Domnich, S.N. Dub, A. Kailer, K.G. Nickel, Cyclic nanoindentation and Raman microspectroscopy study of phase transformations in semiconductors, J. Mater. Res. 15 (2000) 871–879. https://doi.org/10.1557/JMR.2000.0124.

[17] S. Deldar, I.A. Alhafez, M. Smaga, T. Beck, H.M. Urbassek, Cyclic indentation of iron: A comparison of experimental and atomistic simulations, Metals (Basel). 9 (2019). https://doi.org/10.3390/met9050541.

[18] Y.Y. Cui, Y.F. Jia, F.Z. Xuan, Micro-deformation evolutions of the constituent phases in duplex stainless steel during cyclic nanoindentation, Sci. Rep. 8 (2018) 1–10. https://doi.org/10.1038/s41598-018-24589-4.

[19] R.H. Telling, C.J. Pickard, M.C. Payne, J.E. Field, Theoretical Strength and Cleavage of Diamond, Phys. Rev. Lett. 84 (2000) 5160–5163. https://doi.org/https://doi- org.kras1.lib.keio.ac.jp/10.1103/PhysRevLett.84.5160.

[20] R. Pérez, P. Gumbsch, Directional Anisotropy in the Cleavage Fracture of Silicon, Phys. Rev. Lett. 84 (2000) 5347–5350. https://doi.org/10.1103/PhysRevLett.84.5347.

[21] T.B. Britton, H. Liang, F.P.E. Dunne, A.J. Wilkinson, The effect of crystal orientation on the indentation response of commercially pure titanium : experiments and simulations, Proc. R. Soc. A-MATHEMATICAL Phys. Eng. Sci. 466 (2010) 695–719. https://doi.org/https://doi-org.kras1.lib.keio.ac.jp/10.1098/rspa.2009.0455.

[22] M. Matsumoto, H. Huang, H. Harada, K. Kakimoto, On the phase transformation of single- crystal 4H – SiC during nanoindentation, J. Phys. D-APPLIED Phys. 50 (2017) 265303. https://doi.org/10.1088/1361-6463/aa7489.

[23] B. Haberl, M. Guthrie, B.D. Malone, J.S. Smith, S. V. Sinogeikin, M.L. Cohen, J.S. Williams, G. Shen, J.E. Bradby, Controlled formation of metastable germanium polymorphs, Phys. Rev. B. 89 (2014) 144111. https://doi.org/10.1103/PhysRevB.89.144111.

[24] D.J. Oliver, J.E. Bradby, J.S. Williams, M. V. Swain, P. Munroe, Rate- dependent phase transformations in nanoindented germanium, J. Appl. Phys. 105 (2009) 126101. https://doi.org/10.1063/1.3151967.

[25] L.Q. Huston, M.S.R.N. Kiran, L.A. Smillie, J.S. Williams, J.E. Bradby, Cold nanoindentation of germanium, Appl. Phys. Lett. 111 (2017) 021901. https://doi.org/10.1063/1.4993163.

[26] J. Jang, G.M. Pharr, Influence of indenter angle on cracking in Si and Ge during nanoindentation, Acta Mater. 56 (2008) 4458–4469. https://doi.org/10.1016/j.actamat.2008.05.005.

[27] M. Barsoum, T. ElRaghy, Synthesis and Characterization of a Remarkable Ceramic Ti3SiC2, J. Am. Ceram. Soc. 79 (1996) 1953–1956. https://doi.org/10.1111/j.1151-2916.1996.tb08018.x.

[28] L.L. Hench, Bioceramics : From Concept to Clinic, J. Am. Ceram. Soc. 74 (1991) 1487–1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x.

[29] R.W. Rice, C.C. Wu, F. Borchelt, Hardness Grain-Size Relations in Ceramics, J. Am. Ceram. Soc. 77 (1994) 2539–2553.

[30] F. Guiberteau, N.P. Padture, H. Cai, B.R. Lawn, Indentation fatigue, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 68 (1993) 1003–1016. https://doi.org/10.1080/01418619308219382.

[31] A. Maerten, P. Zaslansky, C. Mochales, T. Traykova, W.D. Mueller, P. Fratzl, C. Fleck, Characterizing the transformation near indents and cracks in clinically used dental yttria-stabilized zirconium oxide constructs, Dent. Mater. 29 (2013) 241–251. https://doi.org/10.1016/j.dental.2012.10.008.

[32] F. Guiberteau, N.P. Padture, B.R. Lawn, Effect of Grain Size on Hertzian Contact Damage in Alumina, J. Am. Ceram. Soc. 77 (1994) 1825–1831. https://doi.org/10.1111/j.1151-2916.1994.tb07057.x.

[33] V. Keryvin, L. Charleux, R. Hin, J.P. Guin, J.C. Sangleboeuf, Mechanical behaviour of fully densified silica glass under Vickers indentation, Acta Mater. 129 (2017) 492–499. https://doi.org/10.1016/j.actamat.2017.03.008.

[34] R. Vaidyanathan, M. Dao, G. Ravichandran, S. Suresh, Study of mechanical deformation in bulk metallic glass through instrumented indentation, Acta Mater. 49 (2001) 3781–3789.

[35] J. Kim, Y. Choi, S. Suresh, A. Argon, Nanocrystallization During Nanoindentation of a Bulk Amorphous Metal Alloy at Room Temperature, Science (80-. ). 295 (2002) 654–657.

[36] C. Schuh, T. Nieh, A survey of instrumented indentation studies on metallic glasses, J. Mater. Res. 19 (2004) 46–57.

[37] B. Lawn, R. Wilshaw, Indentation fracture: principles and applications, J. Mater. Sci. 10 (1975) 1049–1081. https://doi.org/10.1007/BF00823224.

[38] W. Wang, P. Yao, J. Wang, C. Huang, H. Zhu, B. Zou, H. Liu, J. Yan, Crack- free ductile mode grinding of fused silica under controllable dry grinding conditions, Int. J. Mach. Tools Manuf. 109 (2016) 126–136. https://doi.org/10.1016/j.ijmachtools.2016.07.007.

[39] J. Yan, K. Maekawa, J. Tamaki, T. Kuriyagawa, Micro grooving on single- crystal germanium for infrared Fresnel lenses, J. Micromechanics Microengineering. 15 (2005) 1925–1931. https://doi.org/10.1088/0960-1317/15/10/019.

[40] J.C. Jamieson, Crystal Structures at High Pressures of Metallic Modifications of Silicon and Germanium, Science (80-. ). 139 (1963) 762–764. https://doi.org/10.1126/science.139.3556.762.

[41] S. Minomura, H.G. Drickamer, Pressure induced phase transitions in silicon, germanium and some III–V compounds, J. Phys. Chem. Solids. 23 (1962) 451–456. https://doi.org/10.1016/0022-3697(62)90085-9.

[42] A.P. GERK, D. TABOR, Indentation hardness and semiconductor–metal transition of germanium and silicon, Nature. 271 (1978) 732–733. https://doi.org/10.1038/271732a0.

[43] G.M. Pharr, W.C. Oliver, R.F. Cook, P.D. Kirchner, M.C. Kroll, T.R. Dinger, D.R. Clarke, Electrical resistance of metallic contacts on silicon and germanium during indentation, J. Mater. Res. 7 (1992) 961–972. https://doi.org/10.1557/JMR.1992.0961.

[44] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272–1276. https://doi.org/10.1107/S0021889811038970.

[45] R.J. Nelmes, M.I. McMahon, N.G. Wright, D.R. Allan, J.S. Loveday, Stability and crystal structure of BC8 germanium, Phys. Rev. B. 48 (1993) 9883–9886. https://doi.org/10.1103/PhysRevB.48.9883.

[46] S. Deshmukh, B. Haberl, S. Ruffell, P. Munroe, J.S. Williams, J.E. Bradby, Phase transformation pathways in amorphous germanium under indentation pressure, J. Appl. Phys. 115 (2014) 153502. https://doi.org/10.1063/1.4871190.

[47] J. Jang, M.J. Lance, S. Wen, G.M. Pharr, Evidence for nanoindentation- induced phase transformations in germanium, Appl. Phys. Lett. 86 (2005) 131907. https://doi.org/10.1063/1.1894588.

[48] B.C. Johnson, B. Haberl, S. Deshmukh, B.D. Malone, M.L. Cohen, J.C. McCallum, J.S. Williams, J.E. Bradby, Evidence for the R8 Phase of Germanium, Phys. Rev. Lett. 110 (2013) 085502. https://doi.org/10.1103/PhysRevLett.110.085502.

[49] J.E. Bradby, J.S. Williams, J. Wong-Leung, M. V. Swain, P. Munroe, Nanoindentation-induced deformation of Ge, Appl. Phys. Lett. 80 (2002) 2651–2653. https://doi.org/10.1063/1.1469660.

[50] J.S. Williams, B. Haberl, S. Deshmukh, B.C. Johnson, B.D. Malone, M.L. Cohen, J.E. Bradby, Hexagonal germanium formed via a pressure-induced phase transformation of amorphous germanium under controlled nanoindentation, Phys. Status Solidi - Rapid Res. Lett. 7 (2013) 355–359. https://doi.org/10.1002/pssr.201307079.

[51] S. Xiao, P. Pirouz, On diamond-hexagonal germanium, J. Mater. Res. 7 (1992) 1406–1412. https://doi.org/10.1557/JMR.1992.1406.

[52] A. Kailer, K.G. Nickel, Y.G. Gogotsi, Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations, J. Raman Spectrosc. 30 (1999) 939–946. https://doi.org/10.1002/(SICI)1097-4555(199910)30:10<939::AID- JRS460>3.0.CO;2-C.

[53] D.R. Clarke, M.C. Kroll, P.D. Kirchner, R.F. Cook, B.J. Hockey, Amorphization and Conductivity of Silicon and Germanium Induced by Indentation, Phys. Rev. Lett. 60 (1988) 2156–2159. https://doi.org/10.1103/PhysRevLett.60.2156.

[54] B. Haberl, L.B. Bayu Aji, J.S. Williams, J.E. Bradby, The indentation hardness of silicon measured by instrumented indentation: What does it mean?, J. Mater. Res. 27 (2012) 3066–3072. https://doi.org/10.1557/jmr.2012.389.

[55] S. Wong, B. Haberl, J.S. Williams, J.E. Bradby, The influence of hold time on the onset of plastic deformation in silicon, J. Appl. Phys. 118 (2015) 245904. https://doi.org/10.1063/1.4938480.

[56] H. Huang, J. Yan, New insights into phase transformations in single crystal silicon by controlled cyclic nanoindentation, Scr. Mater. 102 (2015) 35–38. https://doi.org/10.1016/j.scriptamat.2015.02.008.

[57] H. Huang, J. Yan, Volumetric and timescale analysis of phase transformation in single-crystal silicon during nanoindentation, Appl. Phys. A. 122 (2016) 607. https://doi.org/10.1007/s00339-016-0142-4.

[58] T. Kosmac, C. Oblak, P. Jevnikar, N. Funduk, L. Marion, The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic, Dent. Mater. 15 (1999) 426–433. https://doi.org/10.1016/S0109- 5641(99)00070-6.

[59] T. Kizaki, K. Harada, M. Mitsuishi, Efficient and precise cutting of zirconia ceramics using heated cutting tool, CIRP Ann. - Manuf. Technol. 63 (2014) 105–108. https://doi.org/10.1016/j.cirp.2014.03.073.

[60] E.P. Butler, Transformation-toughened zirconia ceramics, Mater. Sci. Technol. (United Kingdom). 1 (1985) 417–432. https://doi.org/10.1179/mst.1985.1.6.417.

[61] X. Zhao, D. Vanderbilt, Phonons and lattice dielectric properties of zirconia, Phys. Rev. B - Condens. Matter Mater. Phys. 65 (2002) 1–10. https://doi.org/10.1103/PhysRevB.65.075105.

[62] R.C. Garvie, R.H. Hannink, R.T. Pascoe, Ceramic steel?, Nature. 258 (1975) 703–704. https://doi.org/10.1038/258703a0.

[63] I. ‐W CHEN, P.E.R. MOREL, Implications of Transformation Plasticity in ZrO2‐Containing Ceramics: I, Shear and Dilatation Effects, J. Am. Ceram. Soc. 69 (1986) 181–189. https://doi.org/10.1111/j.1151-2916.1986.tb07403.x.

[64] M. Mamivand, M. Asle Zaeem, H. El Kadiri, Phase field modeling of stress- induced tetragonal-to-monoclinic transformation in zirconia and its effect on transformation toughening, Acta Mater. 64 (2014) 208–219. https://doi.org/10.1016/j.actamat.2013.10.031.

[65] R.H.J. Hannink, P.M. Kelly, B.C. Muddle, Transformation Toughening in Zirconia-Containing Ceramics, J. Am. Ceram. Soc. 83 (2000) 461–487. https://ceramics-onlinelibrary-wiley-com.kras1.lib.keio.ac.jp/doi/abs/10.1111/j.1151- 2916.2000.tb01221.x.

[66] J.A. Muñoz-Tabares, E. Jiménez-Piqué, M. Anglada, Subsurface evaluation of hydrothermal degradation of zirconia, Acta Mater. 59 (2011) 473–484. https://doi.org/10.1016/j.actamat.2010.09.047.

[67] Y. Gaillard, M. Anglada, E. Jiménez-Piqué, Nanoindentation of yttria-doped zirconia: Effect of crystallographic structure on deformation mechanisms, J. Mater. Res. 24 (2009) 719–727. https://doi.org/10.1557/jmr.2009.0091.

[68] A. Paul, B. Vaidhyanathan, J. Binner, Micro-Raman spectroscopy of indentation induced phase transformation in nanozirconia ceramics, Adv. Appl. Ceram. 110 (2011) 114–119. https://doi.org/10.1179/1743676110Y.0000000016.

[69] M.J. Reece, P.L. Tetlow, C. Galiotis, Phase transformation around indentations in zirconia, J. Mater. Sci. Lett. 11 (1992) 575–577. https://doi.org/10.1007/BF00728613.

[70] J.A. Muñoz-Tabares, E. Jiménez-Piqué, J. Reyes-Gasga, M. Anglada, Microstructural changes in 3Y-TZP induced by scratching and indentation, J. Eur. Ceram. Soc. 32 (2012) 3919–3927. https://doi.org/10.1016/j.jeurceramsoc.2012.02.026.

[71] J.A. Muñoz-Tabares, E. Jiménez-Piqué, J. Reyes-Gasga, M. Anglada, Microstructural changes in ground 3Y-TZP and their effect on mechanical properties, Acta Mater. 59 (2011) 6670–6683. https://doi.org/10.1016/j.actamat.2011.07.024.

[72] E. Liu, G. Xiao, W. Jia, X. Shu, X. Yang, Y. Wang, Strain-induced phase transformation behavior of stabilized zirconia ceramics studied via nanoindentation, J. Mech. Behav. Biomed. Mater. 75 (2017) 14–19. https://doi.org/10.1016/j.jmbbm.2017.07.006.

[73] H. Tang, Z.H. Deng, Y.S. Guo, J. Qian, D. Reynaerts, Depth-of-cut errors in ELID surface grinding of zirconia-based ceramics, Int. J. Mach. Tools Manuf. 88 (2015) 34–41. https://doi.org/10.1016/j.ijmachtools.2014.08.003.

[74] T.G. Bifano, T.A. Dow, R.O. Scattergood, Ductile-Regime grinding: A new technology for machining brittle materials, J. Manuf. Sci. Eng. Trans. ASME. 113 (1991) 184–189. https://doi.org/10.1115/1.2899676.

[75] M. Yang, C. Li, Y. Zhang, D. Jia, X. Zhang, Y. Hou, R. Li, J. Wang, Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions, Int. J. Mach. Tools Manuf. 122 (2017) 55–65. https://doi.org/10.1016/j.ijmachtools.2017.06.003.

[76] C. Zhang, J. Zhang, P. Feng, Mathematical model for cutting force in rotary ultrasonic face milling of brittle materials, Int. J. Adv. Manuf. Technol. 69 (2013) 161– 170. https://doi.org/10.1007/s00170-013-5004-z.

[77] X. Xiao, K. Zheng, W. Liao, H. Meng, Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics, Int. J. Mach. Tools Manuf. 104 (2016) 58–67. https://doi.org/10.1016/j.ijmachtools.2016.01.004.

[78] S. Li, Z. Wang, Y. Wu, Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes, J. Mater. Process. Technol. 205 (2008) 34–41. https://doi.org/10.1016/j.jmatprotec.2007.11.118.

[79] T. Suratwala, R. Steele, M.D. Feit, L. Wong, P. Miller, J. Menapace, P. Davis, Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing, J. Non. Cryst. Solids. 354 (2008) 2023–2037. https://doi.org/10.1016/j.jnoncrysol.2007.11.015.

[80] J. Wang, Y. Li, J. Han, Q. Xu, Y. Guo, Evaluating subsurface damage in optical glasses, J. Eur. Opt. Soc. 6 (2011). https://doi.org/10.2971/jeos.2011.11001.

[81] R.F. Cook, G.M. Pharr, Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics, J. Am. Ceram. Soc. 73 (1990) 787–817. https://doi.org/10.1111/j.1151-2916.1990.tb05119.x.

[82] F. Elfallagh, B.J. Inkson, 3D analysis of crack morphologies in silicate glass using FIB tomography, J. Eur. Ceram. Soc. 29 (2009) 47–52. https://doi.org/10.1016/j.jeurceramsoc.2008.05.042.

[83] B.R. Whittle, R.J. Hand, Morphology of Vickers Indent Flaws in Soda-Lime- Silica Glass, J. Am. Ceram. Soc. 84 (2001) 2361–2365. https://doi.org/10.1111/j.1151- 2916.2001.tb01015.x.

[84] C. Li, L. Zhang, L. Sun, S. Yang, C. Wu, X. Long, J. Ding, Z. Jiang, A quantitative analysis of the indentation fracture of fused silica, J. Am. Ceram. Soc. 102 (2019) 7264–7277. https://doi.org/10.1111/jace.16645.

[85] K. Januchta, P. Liu, S.R. Hansen, T. To, M.M. Smedskjaer, Indentation cracking and deformation mechanism of sodium aluminoborosilicate glasses, J. Am. Ceram. Soc. 103 (2020) 1656–1665. https://doi.org/10.1111/jace.16894.

[86] D.J. Morris, R.F. Cook, In situ cube-corner indentation of soda-lime glass and fused silica, J. Am. Ceram. Soc. 87 (2004) 1494–1501. https://doi.org/10.1111/j.1551-2916.2004.01494.x.

[87] T. Suratwala, L. Wong, P. Miller, M.D. Feit, J. Menapace, R. Steele, P. Davis, D. Walmer, Sub-surface mechanical damage distributions during grinding of fused silica, J. Non. Cryst. Solids. 352 (2006) 5601–5617. https://doi.org/10.1016/j.jnoncrysol.2006.09.012.

[88] P. Li, S. Chen, H. Xiao, Z. Chen, M. Qu, H. Dai, T. Jin, Effects of local strain rate and temperature on the workpiece subsurface damage in grinding of optical glass, Int. J. Mech. Sci. 182 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105737.

[89] J. Chen, Q. Fang, P. Li, Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding, Int. J. Mach. Tools Manuf. 91 (2015) 12–23. https://doi.org/10.1016/j.ijmachtools.2015.01.003.

[90] R. Banerjee, B.K. Sarkar, Crack initiation by indentation fatigue in lead alkali and soda-lime glass, J. Am. Ceram. Soc. 80 (1997) 2722–2724. https://doi.org/10.1111/j.1151-2916.1997.tb03183.x.

[91] D.K. Kim, Y.G. Jung, I.M. Peterson, B.R. Lawn, Cyclic fatigue of intrinsically brittle ceramics in contact with spheres, Acta Mater. 47 (1999) 4711–4725. https://doi.org/10.1016/S1359-6454(99)00246-3.

[92] O. Madelung, U. Rössler, M. Schulz, eds., Germanium (Ge), Young’s, torsion and bulk moduli, Grüneisen parameters, in: Gr. IV Elem. IV-IV III-V Compd. Part b - Electron. Transp. Opt. Other Prop., Springer-Verlag, Berlin/Heidelberg, n.d.: pp. 1–5. https://doi.org/10.1007/10832182_501.

[93] R.D. Dukino, M. V. Swain, Comparative Measurement of Indentation Fracture Toughness with Berkovich and Vickers Indenters, J. Am. Ceram. Soc. 75 (1992) 3299–3304. https://doi.org/10.1111/j.1151-2916.1992.tb04425.x.

[94] B.R. LAWN, D.B. MARSHALL, Hardness, Toughness, and Brittleness: An Indentation Analysis, J. Am. Ceram. Soc. 62 (1979) 347–350. https://doi.org/10.1111/j.1151-2916.1979.tb19075.x.

[95] D.J. Morris, A.M. Vodnick, R.F. Cook, Radial fracture during indentation by acute probes: II, experimental observations of cube-corner and vickers indentation, Int. J. Fract. 136 (2005) 265–284. https://doi.org/10.1007/s10704-005-6033-x.

[96] I.N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3 (1965) 47–57. https://doi.org/10.1016/0020-7225(65)90019-4.

[97] N. V. Novikov, S.N. Dub, Y. V. Milman, I. V. Gridneva, S.I. Chugunova, Application of nanoindentation method to study a semiconductor-metal phase transformation in silicon, J. Superhard Mater. 18 (1996) 32.

[98] T. Juliano, Y. Gogotsi, V. Domnich, Effect of indentation unloading conditions on phase transformation induced events in silicon, J. Mater. Res. 18 (2003) 1192–1201. https://doi.org/10.1557/JMR.2003.0164.

[99] B.R. LAWN, A.G. EVANS, D.B. MARSHALL, Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System, J. Am. Ceram. Soc. 63 (1980) 574–581. https://doi.org/10.1111/j.1151-2916.1980.tb10768.x.

[100] D.B. Marshall, B.R. Lawn, Residual stress effects in sharp contact cracking, part I, indentation fracture mechanics., J. Mater. Sci. 14 (1979) 2001–2012. https://doi.org/10.1007/BF00551043.

[101] D.J. Morris, R.F. Cook, Radial fracture during indentation by acute probes: I, description by an indentation wedging model, Int. J. Fract. 136 (2005) 237–264. https://doi.org/10.1007/s10704-005-6034-9.

[102] G.M. Pharr, W.C. Oliver, F.R. Brotzen, On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation, J. Mater. Res. 7 (1992) 613–617. https://doi.org/10.1557/JMR.1992.0613.

[103] J.C. Hay, A. Bolshakov, G.M. Pharr, A critical examination of the fundamental relations used in the analysis of nanoindentation data, J. Mater. Res. 14 (1999) 2296–2305. https://doi.org/10.1557/JMR.1999.0306.

[104] D.B. MARSHALL, B.R. LAWN, A.G. EVANS, Elastic/Plastic Indentation Damage in Ceramics: The Lateral Crack System, J. Am. Ceram. Soc. 65 (1982) 561– 566. https://doi.org/10.1111/j.1151-2916.1982.tb10782.x.

[105] B.W. Batterman, Hillocks, pits, and etch rate in germanium crystals, J. Appl. Phys. 28 (1957) 1236–1241. https://doi.org/10.1063/1.1722624.

[106] H. Siethoff, K. AhlbornSiethoff, W. Schröter, New Analysis of the Yield Point of Germanium, Phys. Status Solidi. 174 (1999) 205–212. https://doi.org/10.1002/(SICI)1521-396X(199907)174:1<205::AID- PSSA205>3.3.CO;2-W.

[107] C.S. Menoni, J.Z. Hu, I.L. Spain, Germanium at high pressures, Phys. Rev. B. 34 (1986) 362–368. https://doi.org/10.1103/PhysRevB.34.362.

[108] J.-T. Wang, C. Chen, H. Mizuseki, Y. Kawazoe, Kinetic Origin of Divergent Decompression Pathways in Silicon and Germanium, Phys. Rev. Lett. 110 (2013) 165503. https://doi.org/10.1103/PhysRevLett.110.165503.

[109] B.D. Malone, M.L. Cohen, Electronic structure, equation of state, and lattice dynamics of low-pressure Ge polymorphs, Phys. Rev. B. 86 (2012) 054101. https://doi.org/10.1103/PhysRevB.86.054101.

[110] J.E. Bradby, J.S. Williams, J. Wong-Leung, M. V. Swain, P. Munroe, Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon, Appl. Phys. Lett. 77 (2000) 3749–3751. https://doi.org/10.1063/1.1332110.

[111] A.J. Haq, P.R. Munroe, Phase transformations in (111) Si after spherical indentation, J. Mater. Res. 24 (2009) 1967–1975. https://doi.org/10.1557/jmr.2009.0249.

[112] J.E. Bradby, J.S. Williams, J. Wong-Leung, M. V. Swain, P. Munroe, Mechanical deformation in silicon by micro-indentation, J. Mater. Res. 16 (2001) 1500– 1507. https://doi.org/10.1557/JMR.2001.0209.

[113] V. Domnich, Y. Gogotsi, S. Dub, Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon, Appl. Phys. Lett. 76 (2000) 2214–2216. https://doi.org/10.1063/1.126300.

[114] S.-R. Jian, G.-J. Chen, J.-Y. Juang, Nanoindentation-induced phase transformation in (110)-oriented Si single-crystals, Curr. Opin. Solid State Mater. Sci. 14 (2010) 69–74. https://doi.org/10.1016/j.cossms.2009.11.002.

[115] S. Ruffell, J.E. Bradby, J.S. Williams, P. Munroe, Formation and growth of nanoindentation-induced high pressure phases in crystalline and amorphous silicon, J. Appl. Phys. 102 (2007) 063521. https://doi.org/10.1063/1.2781394.

[116] D.J. Oliver, J.E. Bradby, J.S. Williams, M. V. Swain, P. Munroe, Giant pop- ins and amorphization in germanium during indentation, J. Appl. Phys. 101 (2007) 043524. https://doi.org/10.1063/1.2490563.

[117] E.R. Weppelmann, J.S. Field, M. V Swain, Observation, analysis, and simulation of the hysteresis of silicon using ultra-micro-indentation with spherical indenters, J. Mater. Res. 8 (2006) 830–840. https://doi.org/doi.org/10.1557/JMR.1993.0830.

[118] J. Il Jang, M.J. Lance, S. Wen, T.Y. Tsui, G.M. Pharr, Indentation-induced phase transformations in silicon: Influences of load, rate and indenter angle on the transformation behavior, Acta Mater. 53 (2005) 1759–1770. https://doi.org/10.1016/j.actamat.2004.12.025.

[119] J.A. Muñoz Tabares, M.J. Anglada, Quantitative analysis of monoclinic phase in 3Y-TZP by raman spectroscopy, J. Am. Ceram. Soc. 93 (2010) 1790–1795. https://doi.org/10.1111/j.1551-2916.2010.03635.x.

[120] S. Guicciardi, T. Shimozono, G. Pezzotti, Nanoindentation characterization of sub-micrometric Y-TZP ceramics, Adv. Eng. Mater. 8 (2006) 994–997. https://doi.org/10.1002/adem.200600148.

[121] B.A. Cottom, M.J. Mayo, Fracture toughness of nanocrystalline ZrO2- 3mol% y2o3 determined by vickers indentation, Scr. Mater. 34 (1996) 809–814. https://doi.org/10.1016/1359-6462(95)00587-0.

[122] S. Bueno, C. Baudin, Instrumented Vickers microindentation of alumina- based materials, J. Mater. Res. 21 (2006) 161–173. https://doi.org/10.1557/jmr.2006.0007.

[123] P. Murali, U. Ramamurty, Embrittlement of a bulk metallic glass due to sub- Tg annealing, Acta Mater. 53 (2005) 1467–1478. https://doi.org/10.1016/j.actamat.2004.11.040.

[124] H. Huang, J. Yan, Investigating shear band interaction in metallic glasses by adjacent nanoindentation, Mater. Sci. Eng. A. 704 (2017) 375–385. https://doi.org/10.1016/j.msea.2017.08.040.

[125] Y.I. Golovin, Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A Review, Phys. Solid State. 50 (2008) 2205–2236. https://doi.org/10.1134/S1063783408120019.

[126] S.J. Bull, Nanoindentation of coatings, J. Phys. D. Appl. Phys. 38 (2005) R393–R413. https://doi.org/10.1088/0022-3727/38/24/R01.

[127] W. Huang, J. Yan, Surface formation mechanism in ultraprecision diamond turning of coarse-grained polycrystalline ZnSe, Int. J. Mach. Tools Manuf. 153 (2020) 103554. https://doi.org/10.1016/j.ijmachtools.2020.103554.

[128] H. Huang, Y.C. Liu, Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding, Int. J. Mach. Tools Manuf. 43 (2003) 811–823. https://doi.org/10.1016/S0890- 6955(03)00050-6.

[129] J. Wang, P. Feng, J. Zhang, C. Zhang, Z. Pei, Modeling the dependency of edge chipping size on the material properties and cutting force for rotary ultrasonic drilling of brittle materials, Int. J. Mach. Tools Manuf. 101 (2016) 18–27. https://doi.org/10.1016/j.ijmachtools.2015.10.005.

[130] F.F. Lange, Transformation toughening - Part 1 Size effects associated with the thermodynamics of constrained transformations, J. Mater. Sci. 17 (1982) 225–234. https://doi.org/10.1007/BF00809057.

[131] S. Huang, J.G.P. Binner, B. Vaidhyanathan, R.I. Todd, Quantitative analysis of the residual stress and dislocation density distributions around indentations in alumina and zirconia toughened alumina (ZTA) ceramics, J. Eur. Ceram. Soc. 34 (2014) 753–763. https://doi.org/10.1016/j.jeurceramsoc.2013.09.021.

[132] A.E. Giannakopoulos, P.L. Larsson, Analysis of pyramid indentation of pressure-sensitive hard metals and ceramics, Mech. Mater. 25 (1997) 1–35. https://doi.org/10.1016/S0167-6636(96)00051-8.

[133] W. Zhang, G. Subhash, Finite element analysis of interacting Vickers indentations on brittle materials, Acta Mater. 49 (2001) 2961–2974. https://doi.org/10.1016/S1359-6454(01)00198-7.

[134] K. Edalati, S. Toh, Y. Ikoma, Z. Horita, Plastic deformation and allotropic phase transformations in zirconia ceramics during high-pressure torsion, Scr. Mater. 65 (2011) 974–977. https://doi.org/10.1016/j.scriptamat.2011.08.024.

[135] S. Ruffell, J.E. Bradby, J.S. Williams, High pressure crystalline phase formation during nanoindentation: Amorphous versus crystalline silicon, Appl. Phys. Lett. 89 (2006) 091919. https://doi.org/10.1063/1.2339039.

[136] S. Deville, J. Chevalier, H. El Attaoui, Atomic force microscopy study and qualitative analysis of martensite relief in zirconia, J. Am. Ceram. Soc. 88 (2005) 1261– 1267. https://doi.org/10.1111/j.1551-2916.2005.00174.x.

[137] V.M. Ievlev, S.M. Barinov, V.S. Komlev, A.Y. Fedotov, A. V. Kostyuchenko, A.R. Kilmametov, J. V. Rau, S. V. Dobatkin, Structural transformations in hydroxyapatite ceramics as a result of severe plastic deformation, Ceram. Int. 41 (2015) 10526–10530. https://doi.org/10.1016/j.ceramint.2015.04.145.

[138] G. Magnani, A. Brillante, Effect of the composition and sintering process on mechanical properties and residual stresses in zirconia-alumina composites, J. Eur. Ceram. Soc. 25 (2005) 3383–3392. https://doi.org/10.1016/j.jeurceramsoc.2004.09.025.

[139] S.M. Kurtz, S. Kocagöz, C. Arnholt, R. Huet, M. Ueno, W.L. Walter, Advances in zirconia toughened alumina biomaterials for total joint replacement, J. Mech. Behav. Biomed. Mater. 31 (2014) 107–116. https://doi.org/10.1016/j.jmbbm.2013.03.022.

[140] Y. Li, N. Zheng, H. Li, J. Hou, X. Lei, X. Chen, Z. Yuan, Z. Guo, J. Wang, Y. Guo, Q. Xu, Morphology and distribution of subsurface damage in optical fused silica parts : Bound-abrasive grinding, Appl. Surf. Sci. 257 (2011) 2066–2073. https://doi.org/10.1016/j.apsusc.2010.09.051.

[141] W. Wang, Z. Li, P. Yao, J. Li, F. Chen, Y. Liu, Sink-in/pile-up formation and crack nucleation mechanisms of high purity fused silica and soda-lime silica glass during nanoindentation experiments, Ceram. Int. 46 (2020) 24698–24709. https://doi.org/10.1016/j.ceramint.2020.06.260.

[142] R. Rabe, J.M. Breguet, P. Schwaller, S. Stauss, F.J. Haug, J. Patscheider, J. Michler, Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope, Thin Solid Films. 469–470 (2004) 206–213. https://doi.org/10.1016/j.tsf.2004.08.096.

[143] S. V. Hainsworth, M.R. McGurk, T.F. Page, The effect of coating cracking on the indentation response of thin hard-coated systems, Surf. Coatings Technol. 102 (1998) 97–107. https://doi.org/10.1016/S0257-8972(97)00683-X.

[144] A.G. Mikosza, B.R. Lawn, Section-and-etch study of Hertzian fracture mechanics, J. Appl. Phys. 42 (1971) 5540–5545. https://doi.org/10.1063/1.1659977.

[145] P. Li, T. Jin, H. Xiao, Z. Chen, M. Qu, H. Dai, S. Chen, Effects of wheel speed on surface/subsurface damage characteristics in grinding of glass-ceramics, Ceram. Int. 46 (2020) 17717–17728. https://doi.org/10.1016/j.ceramint.2020.04.076.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る