リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development and application of in-situ X-ray diffraction during milling at SPring-8.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development and application of in-situ X-ray diffraction during milling at SPring-8.

ZHENG YANYAN 筑波大学 DOI:10.15068/0002008291

2023.09.13

概要

A number of commercially useful and scientifically interesting materials were synthesized using advanced
synthesis techniques such as 3D printing, [1] modern microwave methods, [2] spark plasma sintering [3] and
atomic layer deposition [4]. Nano materials are playing very important roles in the improvement of oxidation,
creep resistance property, fracture toughness, sinter ability and strength. [5] Nano materials have been widely
applicated in chemistry, [6] drug, [7] and metallurgy. [8] Ball milling is a traditional and useful tool for nano
material synthesis. The wet, dry, hard and soft materials are able to be synthesized by the ball milling. [9] It
has been employed in inorganic, organic and organometallic compounds due to the benefits including simple
operation, high efficiency, low cost and an environmentally friendly process. [5, 10]
Ball milling is an efficient process in which powder particles are continuously welded, deformed and
fractured. Particle sizes are reduced and mixed, which promotes chemical reactivity. [5, 11, 12] There are
several typical kinds of ball milling including planetary ball milling, high energy ball milling, shaker milling
and mini ball milling. The mechanism of ball milling is the transfer of mechanical energy to powders due to
collisions between balls, between the ball and the wall inside of a jar. [12] There are several factors, such as
milling time, ball size and ball number, ball-to-powder weight ratio, speed or frequency, processing control
agent, dry and wet milling, affecting the particle size distribution, microstructure, morphology, contributing to
the properties of the final product. [11]
The milling has been applied to control the evolution of crystallite size, morphology and lattice strain with
time. X. Zhao et al. reported the evolution of structure, morphology, particle size, lattice parameters and lattice
strain with time by mechanical milling. The processes of cold welding and fracture happen due to mechanical
force during ball milling. The particle size was reduced to 9.4 nm when the milling time was 40 h. [13] M.
Ramezani et al. investigated the influence of operating conditions of mechanical alloying. The particle size
was decreased from about 31.97 μm to 8.93 μm and the shape was changed from flake-like structures to
granular structures using methanol as the processing control agent. [11] B. J. Babalola et al. studied the effect
of ball-to-powder weight ratio, lattice strain and morphology with time by high energy ball milling. The particle
size of 7.867 nm was obtained when the milling time was 10 h with the ball-to-powder weight ratio at 10:1.
[5] A. I. Salimon et al. observed the dislocation structure evolution in nanocrystalline structure by high energy
mechanical milling. The amount of lattice strain was increased with time. The stacking fault energy was
reduced with increasing milling time when the grain size was steady. [14]
Mechanochemistry has become a more effective and advantageous method of green chemistry compared
with traditional solution-based methods. It has been widely used in industrial aspects, organic and inorganic
materials, cocrystals and pharmaceutical aspects in the last two decades. [15] Mechanochemical reactions are
commonly explained in three steps: (1) chemical reaction by molecular migrations due to mixing of reactants,
(2) the new phase nucleation and growth, (3) formation of the fresh surface of the product phase during or after
the reaction. [6]
In order to understand the milling process and reveal the mechanism of milling, it needs to observe the
milling conditions during milling. It is difficult to monitor the reaction during ball milling because of the
rapidly moving jar and drastic collisions between balls and between a ball and a wall. Even though stepwise
analysis reveals the characterization of several interval intermediates, it is still impossible to explore the milling
reaction with solvent, pressure and temperature. [16] Stepwise analysis can lead to misleading results of the
reaction at the beginning and obtains different products with a continuous milling process. [6]
The poor understanding of mechanochemistry at microscopic and molecular levels has prevented extensive
application in the laboratory and in the industry. E. Colacino et al. investigated the connection between milling
dynamics and transformation kinetics and provided crucial information for the fundamental understanding of
the mechanochemical process. [12] It is crucial to understand the relation between the mechanochemical
transformations and the individual collisions on the molecular scale during ball milling. An accurate kinetic
model is necessary for understanding the mechanism of processing conditions of milling. ...

この論文で使われている画像

参考文献

[1] W. Jung, Y. H. Jung, P. V. Pikhitsa, J. C. Feng, Y. H. Yang, M. Kim, H. Y. Tsai, T. Tanaka, J. Shin, K. Y.

Kim, H. Choi, J. Rho* and M. Choi*, “Three-dimensional nanoprinting via charged aerosoljets”, Nature

2021, 592, 54. (Doi: 10.1038/s41586-021-03353-1)

[2] H. J. Kitchen, S. K. Vallance, J. L. Kennedy, N. Tapia-Ruiz, L. Carassiti, A. Harrison, A. G. Whittaker, T.

D. Drysdale, S. W. Kingman and D. H. Gregory*, “Modern Microwave Methods in Solid-State Inorganic

Materials Chemistry: From Fundamentals to Manufacturing”, Chem. Rev. 2014, 114, 1170-1206. (Doi:

10.1021/cr4002353)

[3] E. Dumont-Botto, C. Bourbon, S. Patoux, P. Rozier and M. Dolle*, “Synthesis by Spark Plasma Sintering:

A new way to obtain electrode materials for lithium ion batteries”, J. Power Sources 2011, 196, 2274-2278.

(Doi: 10.1016/j.jpowsour.2010.09.037)

[4] I. K. Oh, W. H. Kim, L. Zeng, J. Singh, D. Bae, A. J. M. Mackus, J. G. Song, S. Seo, B. Shong, H. Kim

and S. F. Bent*, “Synthesis of a Hybrid Nanostructure of ZnO-Decorated MoS2 by Atomic Layer

Deposition”, ACS Nano 2020, 14, 1757-1769. (Doi: 10.1021/acsnano.9b07467)

[5] B. J. Babalola*, M. B. Shongwe, A. L. Rominiyi, S. O. Jeje and P. A. Olubambi, “A study of nanocrystalline

nickel powders developed via high-energy ball milling”, Int. J. Adv. Manuf. Tech. 2019, 102, 3657-3665.

(Doi: 10.1007/s00170-019-03427-5)

[6] T. Friščić*, I. Halasz, P. J. Beldon, A. M. Belenguer, F. Adams, S. A. J. Kimber, V. Honkimäki and R. E.

Dinnebier, “Real-time and in situ monitoring of mechanochemical milling reactions”, Nat. Chem. 2013, 5,

66-73. (Doi: 10.1038/NCHEM.1505)

[7] S. Karki, T. Friščić, L. Fábián, P. R. Laity, G. M. Day and W. Jones*, “Improving Mechanical Properties

of Crystalline Solids by Cocrystal Formation: New Compressible Forms of Paracetamol”, Adv. Mater. 2009,

21, 3905. (Doi: 10.1002/adma.200900533)

[8] Z. Y. Liu, S. J. Xu, B. L. Xiao*, P. Xue, W. G. Wang and Z. Y. Ma, “Effect of ball-milling time on

mechanical properties of carbon nanotubes reinforced aluminum matrix composites”, Compos. Part AAppl. S. 2012, 43, 2161-2168. (Doi: 10.1016/j.compositesa.2012.07.026)

[9] C. F. Burmeister* and A. Kwade, “Process engineering with planetary ball mills”, Chem. Soc. Rev. 2013,

42, 7660-7667. (Doi: 10.1039/c3cs35455e)

[10] C. Mottillo* and T. Friščić*, “Advances in Solid-State Transformations of Coordination Bonds: From the

Ball Mill to the Aging Chamber” Molecules 2017, 22, 144. (Doi: 10.3390/molecules22010144)

[11] M. Ramezani* and T. Neitzert, “Mechanical milling of aluminum powder using planetary ball milling

process”, J. Achieve. Mater. Manufac. Engineer. 2012, 55, 790-798.

[12] E. Colacino*, M. Carta, G. Pia, A. Porcheddu, P. C. Ricci and F. Delogu*, “Processing and Investigation

Methods in Mechanochemical Kinetics”, ACS Omega 2018, 3, 9196-9209. (Doi:

10.1021/acsomega.8b01431)

[13] X. Y. Zhao, Y. Ding, L. Q. Ma*, X. D. Shen and S. Y. Xu, “Structure, morphology and electrocatalytic

characteristics of nickel powders treated by mechanical milling”, Int. J. Hydrogen Energy 2008, 33, 63516356. (Doi: 10.1016/j.ijhydene.2008.07.117)

[14] A. I. Salimon, A. M. Korsunsky* and A. N. Ivanov, “The character of dislocation structure evolution in

nanocrystalline FCC Ni-Co alloys prepared by high-energy mechanical milling”, Mat. Sci. Eng. A 1999,

271, 196-205. (Doi: 10.1016/S0921-5093(99)00205-1)

[15] S. L. James*, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett,

W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed and D. C.

Waddell, “Mechanochemistry: opportunities for new and cleaner synthesis”, Chem. Soc. Rev. 2012, 41,

413-447. (Doi: 10.1039/c1cs15171a)

[16] D. Cincic, T. Friščić and W. Jones*, “A Stepwise Mechanism for the Mechanochemical Synthesis of

Halogen-Bonded Cocrystal Architectures”, J. Am. Chem. Soc. 2008, 130, 7524. (Doi: 10.1021/ja801164v)

[17] R. I. Walton and D. O’Hare*, “Watching solids crystallise using in situ powder diffraction”, Chem.

114

Commun. 2000, 23, 2283-2291. (Doi: 10.1039/b007795j)

[18] I. Halasz, S. A. J. Kimber, P. J. Beldon, A. M. Belenguer, F. Adams, V. Honkimaki, R. C. Nightingale, R.

E. Dinnebier and T. Friščić, “In situ and real-time monitoring of mechanochemical milling reactions using

synchrotron X-ray diffraction”, Nat. Protoc. 2013, 8, 1718-1729. (Doi: 10.1038/nprot.2013.100)

[19] D. Tan and F. Garcia*, “Main group mechanochemistry: from curiosity to established protocols”, Chem.

Soc. Rev. 2019, 48, 2274-2292. (Doi: 10.1039/c7cs00813a)

[20] A. A. L. Michalchuk*, and F. Emmerling*, “Time-Resolved In Situ Monitoring of Mechanochemical

Reactions”, Angew. Chem. Int. Ed. 2022, 61, e202117270. (Doi: 10.1002/anie.202117270)

[21] M. Leger, J. F. Guo, B. MacMillan, H. M. Titi, T. Friščić, B. A. Blight* and B. Balcom*, “Relaxation

Time Correlation NMR for Mechanochemical in-situ Reaction Monitoring of Metal-Organic Frameworks”,

ChemRxiv. 2021, (Doi: 10.26434/chemrxiv-2021-rbj0t)

[22] P. A. Julien, I. Malvestiti and T. Friščić*, “The effect of milling frequency on a mechanochemical organic

reaction monitored by in situ Raman spectroscopy”, Beilstein J. Org. Chem. 2017, 13, 2160-2168. (Doi:

10.3762/bjoc.13.216)

[23] A. D. Katsenis, A. Puškarić, V. Štrukil, C. Mottillo, P. A. Julien, K. Užarević, M. H. Pham, T. O. Do, S.

A. J. Kimber, P, Lazić, O, Magdysyuk, R. E. Dinnebier, I. Halasz, T. Friščić, “In situ X-ray diffraction

monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework”, Nat.

Commun. 2015, 6, 6662. (Doi: 10.1038/ncomms7662)

[24] X. H. Ma, W. B. Yuan, S. E. J. Bell* and S. L. James*, “Better understanding of mechanochemical

reactions: Raman monitoring reveals surprisingly simple ‘pseudo-fluid’ model for a ball milling reaction”,

Chem. Commun. 2014, 50, 1585-1587. (Doi: 10.1039/c3cc47898j)

[25] L. S. Germann*, M, Arhangelskis, M, Etter, R. E. Dinnebier and T. Friščić*, “Challenging the Ostwald

rule of stages in mechanochemical cocrystallisation”, Chem. Sci. 2020, 11, 10092-10100. (Doi:

10.1039/d0sc03629c)

[26] T. Friščić*, C. Mottillo and H. M. Titi, “Mechanochemistry for Synthesis”, Angew. Chem. Int. Edit. 2020,

59, 1018-1029. (Doi: 10.1002/anie.201906755)

[27] L. S. Germann*, A. D. Katsenis, I. Huskic, P. A. Julien, K. Uzarevic, M. Etter, O. K. Farha, T. Friščić*

and R. E. Dinnebier*, “Real-Time in Situ Monitoring of Particle and Structure Evolution in the

Mechanochemical Synthesis of UiO-66 Metal−Organic Frameworks”, Cryst. Growth Des. 2020, 20, 4954. (Doi: 10.1021/acs.cgd.9b01477)

[28] T. Friščić*, D. G. Reid, I. Halasz, R. S. Stein, R. E. Dinnebier and M. J. Duer, “Ion- and Liquid-Assisted

Grinding: Improved Mechanochemical Synthesis of Metal–Organic Frameworks Reveals Salt Inclusion

and Anion Templating”, Angew. Chem. Int. Edit. 2010, 49, 712-715. (Doi: 10.1002/anie.200906583)

[29] V. Ban, Y. Sadikin, M. Lange, N. Tumanov, Y. Filinchuk, R. Cerny and N. Casati*, “Innovative in Situ

Ball Mill for X‑ray Diffraction”, Anal. Chem. 2017, 89, 13176-13181. (Doi:

10.1021/acs.analchem.7b02871)

[30] H. Kulla, S. Haferkamp, I. Akhmetova, M. Rollig, C. Maierhofer, K. Rademann and F. Emmerling*, “In

Situ Investigations of Mechanochemical One-Pot Syntheses”, Angew. Chem. Int. Ed. 2018, 57, 5930-5933.

(Doi: 10.1002/anie.201800147)

[31] G. I. Lampronti, A. A. L. Michalchuk, P. P. Mazzeo, A. M. Belenguer, J. K. M. Sanders, A. Bacchi and F.

Emmering, “Changing the game of time resolved X-ray diffraction on the mechanochemistry playground

by downsizing”, Nat. Commun. 2021, 12, 6134. (Doi: 10.1038/s41467-021-26264-1)

[32] N. Tumanov, V. Ban, A. Poulain and Y. Filinchuk*, “3D-printed jars for ball-milling experiments

monitored in situ by X-ray powder diffraction”, J. Appl. Cryst. 2017, 50, 994-999. (Doi:

10.1107/S1600576717006744)

[33] A. S. Cooper, “Precise Lattice Constants of Germanium, Aluminum, Gallium Arsenide, Uranium, Sulphur,

Quartz and Sapphire”, Acta Crystallogra. 1962, 15, 578-582. (Doi: 10.1107/S0365110X62001474)

[34] E. G. Shkvarina, A. A. Titov, A. S. Shkvarin*, J. R. Plaisier, L. Plaisier, L. Gigli and A. N. Titov, “Thermal

115

stability of the layered modification of Cu0.5ZrTe2 in the temperature range 25–900 °C”, Acta Crystallogra.

2018, 74, 1020-1025. (Doi: 10.1107/S2053229618009841)

[35] E. Nishibori*, E. Sunaoshi, A. Yoshida, S. Aoyagi, K. Kato, M. Takata and M. Sakata, “Accurate structure

factors and experimental charge densities from synchrotron X-ray powder diffraction data at SPring-8”,

Acta Crystallogr., A: Found. Crystallogr. 2007, 63, 43-52. (Doi: 10.1107/S0108767306047210)

[36] E. A. Owen and E. L. Yates, “LXVI. X-ray measurement of the thermal expansion of pure nickel”, Philos.

Mag. 1936, 21, 809-819. (Doi: 10.1080/14786443608561628)

[37] X. G. Liu, Y. J. Li, L. Zeng, X. Li, N. Chen, S. B. Bai, H. N. He, Q. Wang and C. H. Zhang*, “A Review

on Mechanochemistry: Approaching Advanced Energy Materials with Greener Force”, Adv. Mater. 2022,

2108327. (Doi: 10.1002/adma.202108327)

[38] S. Glowniak, B. Szczesniak, J. Choma and M. Jaroniec*, “Mechanochemistry: Toward green synthesis of

metal–organic frameworks”, Mater. Today, 2021, 46, 109-124. (Doi: 10.1016/j.mattod.2021.01.008)

[39] K. Kubota*, Y. D. Pang, A. Miura and H. Ito*, “Redox reactions of small organic molecules using ball

milling and piezoelectric materials”, Science 2019, 366, 1500-1504. (Doi: 10.1126/science.aay8224)

[40] G. F. Han, F. Li, Z. W. Chen, C. Coppex, S. J. Kim, H. J. Noh, Z. P. Fu, Y. L. Lu, C. V. Singh, S. Siahrostami,

Q. Jiang and J. B. Baek, “Mechanochemistry for ammonia synthesis under mild conditions”, Nat.

Nanotechnol. 2021, 16, 325. (Doi: 10.1038/s41565-020-00809-9)

[41] L. Takacs*, “Self-sustaining reactions induced by ball milling”, J. Prog. Mater. Sci. 2002, 47, 355-414.

(Doi: 10.1016/S0079-6425(01)00002-0)

[42] L. Takacs*, “THE MECHANOCHEMICAL REDUCTION OF AgCl WITH METALS”, J. Therm. Anal.

Calorim. 2007, 90, 81-84. (Doi: 10.1007/s10973-007-8479-8)

[43] D. R. Buchanan* and P. M. Harris, “Neutron and X-ray Diffraction Investigation of Aluminum Chloride

Hexahydrate”, Acta Crystallogr. B 1968, 24, 954. (Doi: 10.1107/S056774086800347X)

[44] Y. Yano, H. Kasai, Y. Y. Zheng, E. Nishibori*, Y. Hisaeda* and T. Ono*, “Multicomponent Crystals with

Competing Intermolecular Interactions: In Situ X-ray Diffraction and Luminescent Features Reveal

Multimolecular Assembly under Mechanochemical Conditions”, Angew. Chem. Int. Ed. 2022, 61,

e202203853. (Doi: 10.1002/anie.202203853)

116

Acknowledgement

First and foremost, I would like to express my sincere gratitude to my supervisor, Professor Nishibori for

his invaluable advice, constant support, and patience during my PhD study. His vast knowledge and wealth of

experience have inspired me throughout my studies. My gratitude is extended to his generous participation in

guiding, constructive feedback all through my studies.

I would also like to express my gratitude to Assistant Professor Kasai for all the support and instructions he

provided me throughout my doctoral studies, to Assistant Professor Galica for all his help and advice with this

PhD. I would like to express my sincere thanks to Secretary Jung for her help in thesis writing.

My thanks also go to Tomoki Fujita and Seiya Takahashi for their insightful comments and encouragement

when I had difficulties in my research and daily life. I would like to thank my good friends, Xiang Sun, Xin

Wang, Yipeng Wang, Wei Liu, Yunzhong Li, Chunhui Wang, Hang Wang, Yingbin Wang and Pengfei Liu and

so on for giving me useful information and suggestions during the past three years.

Lastly, I would like to give my deepest appreciation to my family for their understanding, thoughtful

kindness and continuous support in my life. Without their unconditional support, it would be impossible for

me to complete my study.

117

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る