リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「コリネ型細菌を宿主とした組換えRNA分子の高生産基盤技術の開発」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

コリネ型細菌を宿主とした組換えRNA分子の高生産基盤技術の開発

羽城, 周平 筑波大学 DOI:10.15068/00160473

2020.07.22

概要

RNAはヌクレオチドの重合体である核酸であり、生命活動を行うのに必要な生体構成分子である。RNAは、mRNA、tRNAとrRNAの大きく3つに分類される。mRNAはタンパク質合成装置であるリボソームにDNAの遺伝子情報を伝え、tRNAはタンパク質合成の際に特定アミノ酸残基をリボソーム内まで運搬し、rRNAはタンパク質合成を担うリボソームを構成するといった役割を担っている。それ以外の役割もRNAは有することがFireらにより報告された1。ある特定遺伝子と相同なセンス鎖とアンチセンス鎖から構成されるdsRNAは、細胞内でその対象遺伝子の発現を阻害し、この現象をRNA干渉という。RNA干渉を利用することで遺伝子機能を人為的に抑制することができ、遺伝子機能解析の汎用的ツールとして広く使われている2,3。農業分野への応用検討も盛んに行われており、その1つの応用例として、農作物の植物ウイルス感染防除がある4。標的ウイルス由来配列の一部を用いたdsRNAを植物体に予め取り込ませることで、そのウイルス配列に対するRNA干渉を引き起こし抵抗性が付与される結果、ウイルス感染の予防が可能となる。植物ウイルス感染予防に有効とされる化学農薬は未だ開発されていないため、新規なウイルス防除剤としての活用が期待される。また、その他の例として、害虫生育抑制がある。害虫の生育必須遺伝子を対象としたdsRNAを標的害虫に経口投与することで、RNA干渉が作動し、その害虫の生育必須遺伝子の発現が阻害された結果、生育阻害が引き起こされる。近年、化学農薬による生態系攪乱の影響が問題視されており、環境低負荷でかつ種特異的な殺虫効果をもたらす害虫生育抑制剤としてのdsRNAが注目されており、大手アグロケミカル企業を中心に開発が進められている5。

RNAを用いた核酸医薬は、従来の医薬では治療が困難であった疾患に対する医薬品として発展している6。これまでの低分子医薬や抗体医薬は疾患の原因となるタンパク質を標的とするのに対して、核酸医薬はそのタンパク質の合成反応そのものを標的とする。現在、アンチセンス、アプタマーやsiRNAに分類される核酸医薬品が上市されており、臨床試験を実施中の品目数を考慮すると、低分子医薬、抗体医薬に次ぐ医薬としての発展が期待されている。次世代の核酸医薬の位置づけとして、CRISPR/Cas9ゲノム編集7に用いるsgRNA8、遺伝性疾患に対するタンパク質補充療法9や癌・感染症に対するワクチン療法10としてのmRNA医薬11の開発も急速に進んでいる。アンチセンス核酸やsiRNAで必要とされる鎖長は20数塩基長であるのに対して、sgRNAやmRNAは100~数千塩基長の長鎖RNAが使用されている。

RNA製造方法としては、固相化学合成法12が主流ではあるが、製造可能な鎖長としては100塩基長程度までであり、100塩基長を超えるような長鎖のRNA製造は困難である。長鎖RNA製造法としてはinvitro転写による酵素法13が用いられているが、グラムスケール以上での合成が困難であり、RNAポリメラーゼ酵素や反応基質であるヌクレオシド三リン酸(NTP)が高価であり製造コストが高くなることが課題とされてきた。つまり、農業資材用途としてのdsRNAや核酸医薬用途としての長鎖RNAの研究が先行する一方で、それらの産業化を実現するための大量製造法は確立されていなかった。化学合成法や酵素法とは別に、微生物を用いたRNA製造開発14も行われてきたが、RNAは化学構造的にDNAよりも不安定であり、内在性のRNA分解酵素によって分解されやすいことから、目的とする組換えRNAを大量生産することは困難とされてきた。そこで、本研究においては宿主としてコリネ型細菌Corynebacterium glutamicumを用いて、独自のRNA生産技術を構築することで、既存発酵法のRNA生産成績を凌駕する目的RNA大量発現系を構築した。さらに、組換えRNA製造技術の応用例として、dsRNA生産系を構築し、害虫ニジュウヤホシテントウに対する生育阻害の効果を検証した。

この論文で使われている画像

参考文献

1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

2. Matsukura, S. et al. Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res. 31, e77 (2003).

3. Timmons, L. et al. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

4. Robinson, K. E. et al. Double stranded RNA expression and its topical application for nontransgenic resistance to plant viruses. J. Plant Biochem. Biotechnol. 23, 231–237 (2014).

5. Cagliari, D. et al. Management of pest insects and plant diseases by non-transformative RNAi. Front. Plant Sci. 10, 1–18 (2019).

6. Sioud, M. Therapeutic siRNAs. Trends Pharmacol. Sci. 25, 22–28 (2004).

7. Shalem, O. et al. High-throughput functional genomics using CRISPR–Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

8. Yin, H. et al. CRISPR–Cas: a tool for cancer research and therapeutics. Nat. Rev. Clin. Oncol. 16, 281–295 (2019).

9. Hochmann, S. et al. Evaluation of modified Interferon alpha mRNA constructs for the treatment of non-melanoma skin cancer. Sci. Rep. 8, 1–10 (2018).

10. DeFrancesco, L. The ‘anti-hype’ vaccine. Nat. Biotechnol. 35, 193–197 (2017).

11. Dolgin, E. Business: The billion-dollar biotech. Nat. News 522, 26-28 (2015).

12. Beaucage, S. L. et al. Deoxynucleoside phosphoramidites—A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22, 1859–1862 (1981).

13. Milligan, J. F. et al. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798 (1987).

14. Nelissen, F. H. T. et al. Fast production of homogeneous recombinant RNA—towards largescale production of RNA. Nucleic Acids Res. 40, e102 (2012).

15. Green, M. R. et al. How to Win the Battle with RNase. Cold Spring Harb. Protoc. 2019, 95-98 (2019).

16. Cech, T. R. et al. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27, 487–496 (1981).

17. Ohuchi, M. et al. The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus. Curr. Opin. Chem. Biol. 11, 537–542 (2007).

18. Bunka, D. H. et al. Development of aptamer therapeutics. Curr. Opin. Pharmacol. 10, 557–562 (2010).

19. Ng, E. W. M. et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 5, 123–132 (2006).

20. Geary, C. et al. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014).

21. Bechhofer, D. H. Bacillus subtilis mRNA decay: new parts in the toolkit. WIREs RNA 2, 387– 394 (2011).

22. Lasa, I. et al. An effort to make sense of antisense transcription in bacteria. RNA Biol. 9, 1039– 1044 (2012).

23. Wade, J. T. et al. Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nat. Rev. Microbiol. 12, 647–653 (2014).

24. Yukawa, H. et al. Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153, 1042–1058 (2007).

25. Maeda, T. et al. RNase III mediated cleavage of the coding region of mraZ mRNA is required for efficient cell division in Corynebacterium glutamicum. Mol. Microbiol. 99, 1149–1166 (2016).

26. Khvorova, A. et al. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

27. Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395 (2017).

28. Ivashuta, S. et al. Environmental RNAi in herbivorous insects. RNA 21, 840–850 (2015).

29. Zhang, J. et al. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347, 991–994 (2015).

30. Miguel, K. S. et al. The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Manag. Sci. 72, 801–809 (2016).

31. Palli, S. R. RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Curr. Opin. Insect Sci. 6, 1–8 (2014).

32. Baum, J. A. et al. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25, 1322–1326 (2007).

33. Zhu, F. et al. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag. Sci. 67, 175–182 (2011).

34. Chikami, Y. et al. Oral RNAi of diap1 in a pest results in rapid reduction of crop damage. bioRxiv 737643 (2019) doi:10.1101/737643.

35. Takahashi, D. et al. AJIPHASE®: A highly efficient synthetic method for one-pot peptide elongation in the solution phase by an Fmoc strategy. Angew. Chem. 129, 7911–7915 (2017).

36. Ponchon, L. et al. A generic protocol for the expression and purification of recombinant RNA in Escherichia coli using a tRNA scaffold. Nat. Protoc. 4, 947–959 (2009).

37. Becker, J. et al. Bio-based production of chemicals, materials and fuels – Corynebacterium glutamicum as versatile cell factory. Curr. Opin. Biotechnol. 23, 631–640 (2012).

38. Li, Z. et al. Analyzing the decay of stable RNAs in E. coli. Meth. Enzymol. 447, 31–45 (2008).

39. Timmons, L. et al. Specific interference by ingested dsRNA. Nature 395, 854–854 (1998).

40. Aalto, A. P. et al. Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage ϕ6 RNA-dependent RNA polymerase. RNA 13, 422–429 (2007).

41. Suzuki, H. et al. Extracellular production of an RNA aptamer by ribonuclease-free marine bacteria harboring engineered plasmids: a proposal for industrial RNA drug production. Appl. Environ. Microbiol. 76, 786–793 (2010).

42. Suzuki, H. et al. Artificial RNA aptamer production by the marine bacterium Rhodovulum sulfidophilum: improvement of the aptamer yield using a mutated transcriptional promoter. J. Biosci. Bioeng. 112, 458–461 (2011).

43. Yasueda, H. Overproduction of L-glutamate in Corynebacterium glutamicum. Anazawa, H., Shimizu S. (eds.) Microb. Prod. 165–176 (Springer, 2014).

44. Kitade, Y. et al. Production of 4-hydroxybenzoic acid by an aerobic growth-arrested bioprocess using metabolically engineered Corynebacterium glutamicum. Appl. Environ. Microbiol. 84, e02587-17 (2018).

45. Date, M. et al. Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett. Appl. Microbiol. 42, 66–70 (2006).

46. Nakamura, J. et al. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl. Environ. Microbiol. 73, 4491–4498 (2007).

47. Becker, J. et al. From zero to hero—Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13, 159–168 (2011).

48. Carpousis, A. J. The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu. Rev. Microbiol. 61, 71–87 (2007).

49. Nishio, Y. et al. Analysis of strain-specific genes in glutamic acid-producing Corynebacterium glutamicum ssp. lactofermentum AJ 1511. J. Gen. Appl. Microbiol. 63, 157–164 (2017).

50. Miwa, K. et al. Cryptic plasmids in glutamic acid-producing bacteria. Agric. Biol. Chem. 48, 2901–2903 (1984).

51. Santamaría, R. et al. Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. Microbiology 130, 2237–2246 (1984).

52. Yoshihama, M. et al. Cloning vector system for Corynebacterium glutamicum. J. Bacteriol. 162, 591–597 (1985).

53. Smith, M. D. et al. Protoplast transformation in coryneform bacteria and introduction of an alpha-amylase gene from Bacillus amyloliquefaciens into Brevibacterium lactofermentum. Appl. Environ. Microbiol. 51, 634–639 (1986).

54. Deb, J. K. et al. Plasmids of corynebacteria. FEMS Microbiol. Lett. 175, 11–20 (1999).

55. Eggeling, L. et al. Handbook of Corynebacterium glutamicum. (CRC Press, 2005).

56. Tsuchida, Y. et al. Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector. Appl. Microbiol. Biotechnol. 81, 1107- 1115 (2009).

57. Yamaguchi, R. et al. Determination of the complete nucleotide sequence of Brevibacterium lactofermentum plasmid pAM330 and analysis of its genetic information. Agric. Biol. Chem. 50, 2771–2778 (1986).

58. Okibe, N. et al. Antisense-RNA-mediated plasmid copy number control in pCG1-family plasmids, pCGR2 and pCG1, in Corynebacterium glutamicum. Microbiology 156, 3609–3623 (2010).

59. Franch, T. et al. Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J. Mol. Biol. 294, 1115–1125 (1999).

60. Nešvera, J. et al. Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl. Microbiol. Biotechnol. 90, 1641 (2011).

61. Kikuchi, Y. et al. Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus. Appl. Environ. Microbiol. 69, 358–366 (2003).

62. Jäger, W. et al. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J. Bacteriol. 174, 5462–5465 (1992).

63. Venkova-Canova, T. et al. Control of rep gene expression in plasmid pGA1 from Corynebacterium glutamicum. J. Bacteriol. 185, 2402–2409 (2003).

64. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

65. Rodrigo, G. et al. RiboMaker: computational design of conformation-based riboregulation. Bioinformatics 30, 2508–2510 (2014).

66. Venkova-Canova, T. et al. Characterization of the cryptic plasmid pCC1 from Corynebacterium callunae and its use for vector construction. Plasmid 51, 54–60 (2004).

67. Ozaki, A. et al. Functional expression of the genes of Escherichia coli in gram-positive Corynebacterium glutamicum. Mol. Gen. Genet. 196, 175–178 (1984).

68. Trautwetter, A. et al. Structural organization of the Corynebacterium glutamicum plasmid pCG100. Microbiology 137, 2093–2101 (1991).

69. Tauch, A. et al. Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics. J. Biotechnol. 104, 27–40 (2003).

70. Ilyina, T. V. et al. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res. 20, 3279–3285 (1992).

71. McGuffin, L. J. et al. The PSIPRED protein structure prediction server. Bioinformatics 16, 404– 405 (2000).

72. Narasimhan, G. et al. Mining protein sequences for motifs. J. Comput. Biol. 9, 707–720 (2002).

73. Brennan, R. G. et al. The helix-turn-helix DNA binding motif. J. Biol. Chem. 264, 1903–1906 (1989).

74. Zotti, M. et al. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag. Sci. 74, 1239–1250 (2018).

75. Tenllado, F. et al. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol. 3, 3 (2003).

76. Ikeda, M. et al. Amino acid production by Corynebacterium glutamicum. Yukawa, H., Inui, M. (eds.) Corynebacterium glutamicum 107–147 (Springer, 2013).

77. Bukovska, G. et al. Complete nucleotide sequence and genome analysis of bacteriophage BFK20 — A lytic phage of the industrial producer Brevibacterium flavum. Virology 348, 57–71 (2006).

78. Koptides, M. et al. Characterization of bacteriophage BFK20 from Brevibacterium flavum. Microbiology 138, 1387–1391 (1992).

79. Hall, K. B. et al. Interaction of N-terminal domain of U1A protein with an RNA stem/loop. Nucleic Acids Res. 20, 4283–4290 (1992).

80. Endoh, T. et al. Cellular siRNA delivery mediated by a cell-permeant RNA-binding protein and photoinduced RNA interference. Bioconjug. Chem. 19, 1017–1024 (2008).

81. Hansmeier, N. et al. The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Microbiology 152, 923–935 (2006).

82. Toyoda, K. et al. The ldhA gene, encoding fermentative L-lactate dehydrogenase of Corynebacterium glutamicum, is under the control of positive feedback regulation mediated by LldR. J. Bacteriol. 191, 4251–4258 (2009).

83. Yamaguchi, S. et al. Protein-glutaminase from Chryseobacterium proteolyticum, an enzyme that deamidates glutaminyl residues in proteins. Eur. J. Biochem. 268, 1410–1421 (2001).

84. Kikuchi, Y. et al. TatABC overexpression improves Corynebacterium glutamicum Tatdependent protein secretion. Appl. Environ. Microbiol. 75, 603–607 (2009).

85. Matsuda, Y. et al. Method for secretory production of protein. U.S. Patent No. 10,538,798. (2020).

86. Sato, K. et al. CentroidFold: a web server for RNA secondary structure prediction. Nucleic Acids Res. 37, W277–W280 (2009).

87. Pátek, M. et al. Promoters and plasmid vectors of Corynebacterium glutamicum. Yukawa, H., Inui, M. (eds.) Corynebacterium glutamicum 51–

88 (Springer, 2013). 88. Wei, H. et al. Identification and application of a novel strong constitutive promoter in Corynebacterium glutamicum. Ann. Microbiol. 68, 375–382 (2018).

89. Kay, R. et al. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236, 1299–1302 (1987).

90. Khan, K. H. Gene expression in mammalian cells and its applications. Adv. Pharm. Bull. 3, 257–263 (2013).

91. Barák, I. et al. Construction of a promoter-probe shuttle vector for Escherichia coli and brevibacteria. Gene 95, 133–135 (1990).

92. Koptides, M. et al. Characterization and sequence analysis of the F2 promoter from corynephage BFK20. Acta Virol. 38, 223–228 (1994).

93. Gilliom, R. J. Pesticides in U.S. streams and groundwater. Environ. Sci. Technol. 41, 3408–3414 (2007).

94. Gu, L. et al. Recent advances in RNA interference research in insects: Implications for future insect pest management strategies. Crop Prot. 45, 36–40 (2013).

95. Livak, K. J. et al. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

96. 増田税ら. ウイルスフリー植物体の製造方法. WO2107131079A1 (2017).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る