リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of an optical absorption measurement system to characterize KAGRA sapphire mirrors and new high-reflectivity crystalline coatings.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of an optical absorption measurement system to characterize KAGRA sapphire mirrors and new high-reflectivity crystalline coatings.

Manuel, Marchio 東京大学 DOI:10.15083/0002001880

2021.10.04

概要

KAGRA is the Japanese interferometric gravitational wave detector. It employs sapphire test masses and operates at cryogenic temperatures to reduce mirror thermal noise. Sapphire substrates optical absorption needs to be minimized to reduce the heat deposited in the mirrors and to make the cryogenic operation possible.

We developed and tested an optical absorption measurement system based on the so-called Photo-thermal Common-path Interferometer (PCI) technique: a highpower laser at 1064 nm periodically heats up the sample that we want to test; then a probe laser at 633 nm crosses the sample, and it is used to measure the absorption rate inside and on the surface of the sample.

For a better understanding of the system, its calibration, and alignment, we made some numerical simulations that reproduce the absorption signal readout. The simulations results are in good agreement with the measurements and can predict the absorption signal behavior when changing the experimental parameters.

We further improved the setup by designing, assembling and testing an upgraded version of the system. We set a large translation stage to measure KAGRA sapphire mirrors (22 cm in diameter and 15 cm in thickness). We made maps and studied the absorption structures inside the sapphire substrates. The sensitivity on sapphire bulks is better than 2 ppm/cm and the calibration is compliant with other laboratories. We are now able to measure the absorption continuously along the depth of the sample and to make 3D absorption maps. We found interesting absorption structures inside the crystal. This new information will help the maker to improve the quality of future sapphire crystals.

For future upgrades of KAGRA, high-reflectivity substrate-transferred AlGaAs crystalline coatings have been proposed. This new type of coatings will contribute to reducing the coating thermal noise, which is currently a limitation at mid frequencies in the sensitivity curve.

In order to investigate the possibility to apply this new material to KAGRA, we characterized the optical performances of new large-area (2 inches-diameter) AlGaAs crystalline coatings. To measure the absorption map of the coating, we assembled and tested an additional infrared probe (1310 nm) in our PCI system, reaching a sensitivity better than 0.2 ppm. We found that the crystalline coating absorption is very uniform except some point defects. In collaboration with CNRS/LMA, we measured absorption, transmission, defects number, scattering maps, and surface roughness. We measured 2 samples, one is AlGaAs transferred on a fused silica substrate, and the other is AlGaAs transferred on a sapphire substrate. The coatings show excellent optical performances, in particular, the absorption (below 1 ppm) and the scattering (below 10 ppm) fulfill the requirements for KAGRA, but the defects number is higher than current amorphous coatings. In collaboration with MIT, we did a direct thermal noise measurement at room temperature. The result is that the crystalline coating thermal noise is a factor of 2 lower than the amorphous coatings used in present gravitational wave detectors.

この論文で使われている画像

参考文献

[1] B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration). Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116(6):061102, 2 2016.

[2] Manuel Marchiò, Raffaele Flaminio, Laurent Pinard, Daniéle Forest, Christoph Deutsch, Paula Heu, David Follman, and Garrett D. Cole. Optical performance of large-area crystalline coatings. Optics Express, 26(5):6114–6125, 3 2018.

[3] E Müller. Gravitational radiation from core-collapse supernovae. Classical and Quantum Gravity, 14(6):010, 6 1997.

[4] Peter R. Saulson. Fundamentals of interferometric gravitational wave detectors. World Scientific, 1994.

[5] Eleonora Capocasa, Yuefan Guo, Marc Eisenmann, Yuhang Zhao, Akihiro Tomura, Koji Arai, Yoichi Aso, Manuel Marchiò, Laurent Pinard, Pierre Prat, Kentaro Somiya, Roman Schnabel, Matteo Tacca, Ryutaro Takahashi, Daisuke Tatsumi, Matteo Leonardi, Matteo Barsuglia, and Raffaele Flaminio. Measurement of optical losses in a high-finesse 300 m filter cavity for broadband quantum noise reduction in gravitational-wave detectors. Physical Review D, 98(2):022010, 7 2018.

[6] Peter R. Saulson. Terrestrial gravitational noise on a gravitational wave antenna. Physical Review D, 30(4):732–736, 8 1984.

[7] Herbert B. Callen and Richard F. Greene. On a Theorem of Irreversible Thermodynamics. Physical Review, 86(5):702–710, 6 1952.

[8] A. Gillespie and F. Raab. Thermally excited vibrations of the mirrors of laser interferometer gravitational-wave detectors. Physical Review D, 52(2):577–585, 7 1995.

[9] Yu. Levin. Internal thermal noise in the LIGO test masses: A direct approach. Physical Review D, 57(2):659–663, 1 1998.

[10] V.B. Braginsky, M.L. Gorodetsky, and S.P. Vyatchanin. Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae. Physics Letters A, 264(1):1–10, 12 1999.

[11] Bruin Benthem and Yuri Levin. Thermorefractive and thermochemical noise in the beamsplitter of the GEO600 gravitational-wave interferometer. Physical Review D, 80(6):062004, 9 2009.

[12] Gregory M Harry, Andri M Gretarsson, Peter R Saulson, Scott E Kittelberger, Steven D Penn, William J Startin, Sheila Rowan, Martin M Fejer, D R M Crooks, Gianpietro Cagnoli, Jim Hough, and Norio Nakagawa. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Classical and Quantum Gravity, 19(5):897–917, 3 2002.

[13] Rana X. Adhikari. Gravitational radiation detection with laser interferometry. Reviews of Modern Physics, 86(1):121–151, 2 2014.

[14] The LIGO Scientific Collaboration and the Virgo Collaboration. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. arXiv e-prints, November 2018.

[15] I. Andreoni, K. Ackley, J. Cooke, A. Acharyya, J. R. Allison, G. E. Anderson, M. C. B. Ashley, D. Baade, M. Bailes, K. Bannister, A. Beardsley, M. S. Bessell, F. Bian, P. A. Bland, M. Boer, T. Booler, A. Brandeker, I. S. Brown, D. A. H. Buckley, S.-W. Chang, D. M. Coward, S. Crawford, H. Crisp, B. Crosse, A. Cucchiara, M. Cupák, J. S. de Gois, A. Deller, H. A. R. Devillepoix, D. Dobie, E. Elmer, D. Emrich, W. Farah, T. J. Farrell, T. Franzen, B. M. Gaensler, D. K. Galloway, B. Gendre, T. Giblin, A. Goobar, J. Green, P. J. Hancock, B. A. D. Hartig, E. J. Howell, L. Horsley, A. Hotan, R. M. Howie, L. Hu, Y. Hu, C. W. James, S. Johnston, M. Johnston-Hollitt, D. L. Kaplan, M. Kasliwal, E. F. Keane, D. Kenney, A. Klotz, R. Lau, R. Laugier, E. Lenc, X. Li, E. Liang, C. Lidman, L. C. Luvaul, C. Lynch, B. Ma, D. Macpherson, J. Mao, D. E. McClelland, C. McCully, A. Möller, M. F. Morales, D. Morris, T. Murphy, K. Noysena, C. A. Onken, N. B. Orange, S. Osłowski, D. Pallot, J. Paxman, S. B. Potter, T. Pritchard, W. Raja, R. Ridden-Harper, E. RomeroColmenero, E. M. Sadler, E. K. Sansom, R. A. Scalzo, B. P. Schmidt, S. M. Scott, N. Seghouani, Z. Shang, R. M. Shannon, L. Shao, M. M. Shara, R. Sharp, M. Sokolowski, J. Sollerman, J. Staff, K. Steele, T. Sun, N. B. Suntzeff, C. Tao, S. Tingay, M. C. Towner, P. Thierry, C. Trott, B. E. Tucker, P. Väisänen, V. Venkatraman Krishnan, M. Walker, L. Wang, X. Wang, R. Wayth, M. Whiting, A. Williams, T. Williams, C. Wolf, C. Wu, X. Wu, J. Yang, X. Yuan, H. Zhang, J. Zhou, and H. Zovaro. Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes. Publications of the Astronomical Society of Australia, 34:e069, 12 2017.

[16] The LIGO Scientific Collaboration. Advanced LIGO. Classical and Quantum Gravity, 32(7):74001, 2015.

[17] The VIRGO Collaboration. Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 32(2):24001, 2015.

[18] Yoichi Aso, Yuta Michimura, Kentaro Somiya, Masaki Ando, Osamu Miyakawa, Takanori Sekiguchi, Daisuke Tatsumi, and Hiroaki Yamamoto. Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D, 88(4):43007, 2013.

[19] Muzammil A. Arain and Guido Mueller. Design of the Advanced LIGO recycling cavities. Optics Express, 16(14):10018, 7 2008.

[20] Raffaele Flaminio and KAGRA collaboration. The cryogenic challenge: status of the KAGRA project. Journal of Physics: Conference Series, 716(1):012034, 5 2016.

[21] bKAGRA Sensitivity Curve. https://gwcenter.icrr.u-tokyo.ac.jp/en/ researcher/parameter.

[22] T. Akutsu et al. The status of KAGRA underground cryogenic gravitational wave telescope. In 15th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2017) Sudbury, Ontario, Canada, July 24- 28, 2017, 2017.

[23] Chen Dan. Study of a cryogenic suspension system for the gravitational wave telescope KAGRA. PhD thesis, The University of Tokyo, 2015.

[24] Kentaro Somiya. Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector. Classical and Quantum Gravity, 29(12):124007, 6 2012.

[25] L. Pinard, C. Michel, B. Sassolas, L. Balzarini, J. Degallaix, V. Dolique, R. Flaminio, D. Forest, M. Granata, B. Lagrange, N. Straniero, J. Teillon, and G. Cagnoli. Mirrors used in the LIGO interferometers for first detection of gravitational waves. Applied Optics, 56(4):C11, 2 2017.

[26] R Flaminio, J Franc, C Michel, N Morgado, L Pinard, and B Sassolas. A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors. Classical and Quantum Gravity, 27(8):084030, 4 2010.

[27] Garrett D. Cole, Wei Zhang, Michael J. Martin, Jun Ye, and Markus Aspelmeyer. Tenfold reduction of Brownian noise in high-reflectivity optical coatings. Nature Photonics, 7(8):644–650, 8 2013.

[28] Garrett D. Cole. Cavity optomechanics with low-noise crystalline mirrors. In Kishan Dholakia and Gabriel C. Spalding, editors, Optical Trapping and Optical Micromanipulation IX, volume 8458, page 845807. International Society for Optics and Photonics, 10 2012.

[29] The LIGO Scientific Collaboration, the Virgo Collaboration, J. Abadie, B. P. Abbott, R. Abbott, M Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, and et al. Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO’s Fifth and Virgo’s First Science Run. arXiv e-prints, March 2010.

[30] ”T-NA Series Linear Actuator User’s Manual”. https://www.zaber.com/wiki/ Manuals/T-NA.

[31] W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier. Photothermal deflection spectroscopy and detection. Applied Optics, 20(8):1333, 4 1981.

[32] ”OSCAR: An optical FFT code to simulate Fabry Perot cavities with arbitrary mirror profiles”. https://it.mathworks.com/matlabcentral/fileexchange/ 20607-oscar.

[33] ”Software/Zaber Console”. https://www.zaber.com/wiki/Software/Zaber_ Console.

[34] Peter R. Saulson. Thermal noise in mechanical experiments. Physical Review D, 42(8):2437–2445, 10 1990.

[35] Massimo Granata, Emeline Saracco, Nazario Morgado, Alix Cajgfinger, Gianpietro Cagnoli, Jérôme Degallaix, Vincent Dolique, Danièle Forest, Janyce Franc, Christophe Michel, Laurent Pinard, and Raffaele Flaminio. Mechanical loss in state-of-the-art amorphous optical coatings. Physical Review D, 93(1):012007, 1 2016.

[36] G. D. Cole, P. Heu, D. Follman (CMS LLC), C. Deutsch, T. Zederbauer, and C. Pawlu (CMS GmbH). Cms inspection report, crystalline coatings on suprasil fused silica. Personal communication.

[37] G. D. Cole, P. Heu, D. Follman (CMS LLC), C. Deutsch, T. Zederbauer, and C. Pawlu (CMS GmbH). Cms inspection report, crystalline coatings on sapphire. Personal communication.

[38] Bernard Cimma, Danielle Forest, Patrick Ganau, Bernard Lagrange, JeanMarie Mackowski, Christophe Michel, Jean-Luc Montorio, Nazario Morgado, Renee Pignard, Laurent Pinard, and Alban Remillieux. Original optical metrologies of large components. In SPIE 5252, Optical Fabrication, Testing, and Metrology, page 322. International Society for Optics and Photonics, 2 2004.

[39] E. Welsch and D. Ristau. Photothermal measurements on optical thin films. Applied Optics, 34(31):7239, 11 1995.

[40] Vincent Loriette and Claude Boccara. Absorption of low-loss optical materials measured at 1064 nm by a position-modulated collinear photothermal detection technique. Applied Optics, 42(4):649, 2 2003.

[41] Garrett D. Cole, Wei Zhang, Bryce J. Bjork, David Follman, Paula Heu, Christoph Deutsch, Lindsay Sonderhouse, John Robinson, Chris Franz, Alexei Alexandrovski, Mark Notcutt, Oliver H. Heckl, Jun Ye, and Markus Aspelmeyer. High-performance near- and mid-infrared crystalline coatings. Optica, 3(6):647, 6 2016.

[42] ”Newport: Neutral Density Filter Selection Guide”. https://www.newport. com/g/neutral-density-filter-selection-guide.

[43] ”SHIMADZUUV-VIS-NIR Spectrophotometer Solidspec-3700 datasheet”. https://www.ssi.shimadzu.com/products/literature/Spectroscopy/ C101-E101D.pdf.

[44] The VIRGO Collaboration. The VIRGO large mirrors: a challenge for low loss coatings. Classical and Quantum Gravity, 21(5):S935–S945, 3 2004.

[45] Tevis D B Jacobs, Till Junge, and Lars Pastewka. Quantitative characterization of surface topography using spectral analysis. Surface Topography: Metrology and Properties, 5(1):013001, 1 2017.

[46] C. Deumié, R. Richier, P. Dumas, and Claude Amra. Multiscale roughness in optical multilayers: atomic force microscopy and light scattering. Applied Optics, 35(28):5583, 10 1996.

[47] S. Gras, H. Yu, W. Yam, D. Martynov, and M. Evans. Audio-band coating thermal noise measurement for Advanced LIGO with a multimode optical resonator. Physical Review D, 95(2):022001, 1 2017.

[48] S. Gras and M. Evans. Direct measurement of coating thermal noise in optical resonators. Physical Review D, 98(12):122001, 12 2018.

[49] Eric D. Black. An introduction to Pound–Drever–Hall laser frequency stabilization. American Journal of Physics, 69(1):79–87, 1 2001.

[50] M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, and G. Ogin. Thermooptic noise in coated mirrors for high-precision optical measurements. Physical Review D, 78(10):102003, 11 2008.

[51] Yuri Levin. Fluctuation–dissipation theorem for thermo-refractive noise. Physics Letters A, 372(12):1941–1944, 3 2008.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る