リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass

Moriishi, Takeshi 大阪大学

2020.05.28

概要

The strength of bone depends on bone quantity and quality. Osteocalcin (Ocn) is the most abundant noncollagenous protein in bone and is produced by osteoblasts. It has been previously claimed that Ocn inhibits bone formation and also functions as a hormone to regulate insulin secretion in the pancreas, testosterone synthesis in the testes, and muscle mass. We generated Ocn-deficient (Ocn–/–) mice by deleting Bglap and Bglap2. Analysis of Ocn–/ –mice revealed that Ocn is not involved in the regulation of bone quantity, glucose metabolism, testosterone synthesis, or muscle mass. The orientation degree of collagen fibrils and size of biological apatite (BAp) crystallites in the c-axis were normal in the Ocn–/–bone. However, the crystallographic orientation of the BAp c-axis, which is normally parallel to collagen fibrils, was severely disrupted, resulting in reduced bone strength. These results demonstrate that Ocn is required for bone quality and strength by adjusting the alignment of BAp crystallites parallel to collagen fibrils; but it does not function as a hormone.

この論文で使われている画像

参考文献

1. Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann. N.Y. Acad. Sci. 2017; 1410(1):93–106. Epub 2017/12/22. https://doi.org/10.1111/nyas.13572 PMID: 29265417; PubMed Central PMCID: PMC5774017.

2. Sroga GE, Vashishth D. Effects of bone matrix proteins on fracture and fragility in osteoporosis. Current osteoporosis reports. 2012; 10(2):141–50. Epub 2012/04/27. https://doi.org/10.1007/s11914-012- 0103-6 PMID: 22535528; PubMed Central PMCID: PMC3375270.

3. Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiological reviews. 1989; 69(3):990–1047. Epub 1989/07/01. https://doi.org/ 10.1152/physrev.1989.69.3.990 PMID: 2664828.

4. Celeste AJ, Rosen V, Buecker JL, Kriz R, Wang EA, Wozney JM. Isolation of the human gene for bone gla protein utilizing mouse and rat cDNA clones. EMBO j. 1986; 5(8):1885–90. Epub 1986/08/01. PMID: 3019668; PubMed Central PMCID: PMC1167054.

5. Rahman S, Oberdorf A, Montecino M, Tanhauser SM, Lian JB, Stein GS, et al. Multiple copies of the bone-specific osteocalcin gene in mouse and rat. Endocrinology. 1993; 133(6):3050–3. Epub 1993/12/ 01. https://doi.org/10.1210/endo.133.6.8243336 PMID: 8243336.

6. Desbois C, Hogue DA, Karsenty G. The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J biol chem. 1994; 269(2):1183–90. Epub 1994/ 01/14. PMID: 8288580.

7. Sato M, Tada N. Preferential expression of osteocalcin-related protein mRNA in gonadal tissues of male mice. Biochem Biophys Res Commun. 1995; 215(1):412–21. Epub 1995/10/04. https://doi.org/10. 1006/bbrc.1995.2480 PMID: 7575621.

8. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996; 382(6590):448–52. Epub 1996/08/01. https://doi.org/10.1038/ 382448a0 PMID: 8684484.

9. Bailey S, Karsenty G, Gundberg C, Vashishth D. Osteocalcin and osteopontin influence bone morphology and mechanical properties. Ann N Y Acad Sci. 2017; 1409(1):79–84. Epub 2017/10/19. https://doi. org/10.1111/nyas.13470 PMID: 29044594; PubMed Central PMCID: PMC5730490.

10. Lambert LJ, Challa AK, Niu A, Zhou L, Tucholski J, Johnson MS, et al. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology. Dis Model Mech. 2016; 9(10):1169–79. Epub 2016/08/03. https://doi.org/10.1242/dmm.025247 PMID: 27483347; PubMed Central PMCID: PMC5087831.

11. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone. 1998; 23(3):187–96. Epub 1998/09/16. https://doi.org/10.1016/s8756-3282(98)00092-1 PMID: 9737340.

12. Kavukcuoglu NB, Patterson-Buckendahl P, Mann AB. Effect of osteocalcin deficiency on the nanomechanics and chemistry of mouse bones. J Mech Behav Biomed Mater. 2009; 2(4):348–54. Epub 2009/ 07/25. https://doi.org/10.1016/j.jmbbm.2008.10.010 PMID: 19627841.

13. Poundarik AA, Boskey A, Gundberg C, Vashishth D. Biomolecular regulation, composition and nanoarchitecture of bone mineral. Scientific reports. 2018; 8(1):1191. Epub 2018/01/21. https://doi.org/ 10.1038/s41598-018-19253-w PMID: 29352125.

14. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007; 130(3):456–69. Epub 2007/08/19. https://doi.org/10.1016/j.cell. 2007.05.047 PMID: 17693256; PubMed Central PMCID: PMC2013746.

15. Hwang YC, Jeong IK, Ahn KJ, Chung HY. The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced β-cell function in middle-aged male subjects. DiabetesMetab Res. 2009; 25(8):768–72.

16. Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, et al. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporosis Int. 2011; 22(1):187–94.

17. Iki M, Tamaki J, Fujita Y, Kouda K, Yura A, Kadowaki E, et al. Serum undercarboxylated osteocalcin levels are inversely associated with glycemic status and insulin resistance in an elderly Japanese male population: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Osteoporosis Int. 2012; 23 (2):761–70.

18. Dı´az-Lo´pez A, Bullo´ M, Juanola-Falgarona M, Martı´nez-Gonza´lez MA, Estruch R, Covas M-I, et al. Reduced serum concentrations of carboxylated and undercarboxylated osteocalcin are associated with risk of developing type 2 diabetes mellitus in a high cardiovascular risk population: a nested case-control study. J Clin Endocrinol Metab. 2013; 98(11):4524–31. https://doi.org/10.1210/jc.2013-2472 PMID: 24037881

19. Okuno S, Ishimura E, Tsuboniwa N, Norimine K, Yamakawa K, Yamakawa T, et al. Significant inverse relationship between serum undercarboxylated osteocalcin and glycemic control in maintenance hemodialysis patients. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2013; 24(2):605–12. Epub 2012/05/15. https://doi.org/10.1007/s00198-012-2003-0 PMID: 22581293.

20. Takashi Y, Koga M, Matsuzawa Y, Saito J, Omura M, Nishikawa T. Undercarboxylated osteocalcin can predict insulin secretion ability in type 2 diabetes. J Diabetes Investig. 2017; 8(4):471–4. Epub 2016/11/ 28. https://doi.org/10.1111/jdi.12601 PMID: 27889949; PubMed Central PMCID: PMC5497042.

21. Shea MK, Gundberg CM, Meigs JB, Dallal GE, Saltzman E, Yoshida M, et al. Gamma-carboxylation of osteocalcin and insulin resistance in older men and women. Am j clin nutr. 2009; 90(5):1230–5. Epub 2009/09/25. https://doi.org/10.3945/ajcn.2009.28151 PMID: 19776145; PubMed Central PMCID: PMC2762158.

22. Mori K, Emoto M, Motoyama K, Lee E, Yamada S, Morioka T, et al. Undercarboxylated osteocalcin does not correlate with insulin resistance as assessed by euglycemic hyperinsulinemic clamp technique in patients with type 2 diabetes mellitus. Diabetology & metabolic syndrome. 2012; 4(1):53.

23. Giudici KVP, Fisberg RM, Marchioni DML, Peters BSE, Martini LA. Crosstalk Between Bone and Fat Tissue: Associations Between Vitamin D, Osteocalcin, Adipokines, and Markers of Glucose Metabolism Among Adolescents. J Am Coll Nutr. 2017; 36(4):273–80. Epub 2017/04/27. https://doi.org/10.1080/ 07315724.2016.1274923 PMID: 28443718.

24. Starup-Linde J, Westberg-Rasmussen S, Lykkeboe S, Handberg A, Hartmann B, Holst JJ, et al. Glucose Tolerance Tests and Osteocalcin Responses in Healthy People. Front Endocrinol. 2018; 9:356. Epub 2018/07/31. https://doi.org/10.3389/fendo.2018.00356 PMID: 30057568; PubMed Central PMCID: PMC6053521.

25. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011; 144(5):796–809. Epub 2011/02/22. https://doi.org/10.1016/j.cell.2011.02. 004 PMID: 21333348; PubMed Central PMCID: PMC3052787.

26. Pi M, Chen L, Huang MZ, Zhu W, Ringhofer B, Luo J, et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PloS one. 2008; 3(12):e3858. Epub 2008/12/04. https://doi.org/10. 1371/journal.pone.0003858 PMID: 19050760; PubMed Central PMCID: PMC2585477.

27. Wellendorph P, Johansen LD, Jensen AA, Casanova E, Gassmann M, Deprez P, et al. No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions. J Mol Endocrinol. 2009; 42(3):215–23. Epub 2008/12/24. https://doi.org/10.1677/JME-08-0149 PMID: 19103720.

28. Jorgensen CV, Gasparini SJ, Tu J, Zhou H, Seibel MJ, Brauner-Osborne H. Metabolic and skeletal homeostasis are maintained in full locus GPRC6A knockout mice. Scientific reports. 2019; 9(1):5995. Epub 2019/04/14. https://doi.org/10.1038/s41598-019-41921-8 PMID: 30979912; PubMed Central PMCID: PMC6461682.

29. Smajilovic S, Clemmensen C, Johansen LD, Wellendorph P, Holst JJ, Thams PG, et al. The L-alphaamino acid receptor GPRC6A is expressed in the islets of Langerhans but is not involved in L-arginineinduced insulin release. Amino acids. 2013; 44(2):383–90. Epub 2012/06/21. https://doi.org/10.1007/ s00726-012-1341-8 PMID: 22714012.

30. Pi M, Zhang L, Lei SF, Huang MZ, Zhu W, Zhang J, et al. Impaired osteoblast function in GPRC6A null mice. J Bone Miner Res. 2010; 25(5):1092–102. Epub 2009/10/31. https://doi.org/10.1359/jbmr.091037 PMID: 19874200; PubMed Central PMCID: PMC3153369.

31. Pi M, Wu Y, Quarles LD. GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo. J Bone Miner Res. 2011; 26(7):1680–3. Epub 2011/03/23. https://doi.org/10.1002/jbmr.390 PMID: 21425331; PubMed Central PMCID: PMC5079536.

32. Pi M, Wu Y, Lenchik NI, Gerling I, Quarles LD. GPRC6A mediates the effects of L-arginine on insulin secretion in mouse pancreatic islets. Endocrinology. 2012; 153(10):4608–15. Epub 2012/08/09. https:// doi.org/10.1210/en.2012-1301 PMID: 22872579; PubMed Central PMCID: PMC3512028.

33. Pi M, Kapoor K, Ye R, Nishimoto SK, Smith JC, Baudry J, et al. Evidence for Osteocalcin Binding and Activation of GPRC6A in beta-Cells. Endocrinology. 2016; 157(5):1866–80. Epub 2016/03/24. https:// doi.org/10.1210/en.2015-2010 PMID: 27007074; PubMed Central PMCID: PMC4870875.

34. Rueda P, Harley E, Lu Y, Stewart GD, Fabb S, Diepenhorst N, et al. Murine GPRC6A Mediates Cellular Responses to L-Amino Acids, but Not Osteocalcin Variants. PloS one. 2016; 11(1):e0146846. Epub 2016/01/20. https://doi.org/10.1371/journal.pone.0146846 PMID: 26785252; PubMed Central PMCID: PMC4718634.

35. Wei J, Hanna T, Suda N, Karsenty G, Ducy P. Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes. 2014; 63(3):1021–31. Epub 2013/09/07. https://doi. org/10.2337/db13-0887 PMID: 24009262; PubMed Central PMCID: PMC3931403.

36. Karsenty G, Olson EN. Bone and Muscle Endocrine Functions: Unexpected Paradigms of Inter-organ Communication. Cell. 2016; 164(6):1248–56. Epub 2016/03/12. https://doi.org/10.1016/j.cell.2016.02. 043 PMID: 26967290; PubMed Central PMCID: PMC4797632.

37. Iwaniec UT, Yuan D, Power RA, Wronski TJ. Strain-dependent variations in the response of cancellous bone to ovariectomy in mice. J Bone Miner Res. 2006; 21(7):1068–74. Epub 2006/07/04. https://doi. org/10.1359/jbmr.060402 PMID: 16813527.

38. Klinck J, Boyd SK. The magnitude and rate of bone loss in ovariectomized mice differs among inbred strains as determined by longitudinal in vivo micro-computed tomography. Calcified Tissue Int. 2008; 83 (1):70–9. Epub 2008/06/28. https://doi.org/10.1007/s00223-008-9150-5 PMID: 18584110.

39. Morris MD, Mandair GS. Raman assessment of bone quality. Clin Orthop Relat R. 2011; 469(8):2160– 9. Epub 2010/12/01. https://doi.org/10.1007/s11999-010-1692-y PMID: 21116756; PubMed Central PMCID: PMC3126952.

40. Ishimoto T, Sato B, Lee JW, Nakano T. Co-deteriorations of anisotropic extracellular matrix arrangement and intrinsic mechanical property in c-src deficient osteopetrotic mouse femur. Bone. 2017; 103:216–23. Epub 2017/07/19. https://doi.org/10.1016/j.bone.2017.06.023 PMID: 28716550.

41. Brinkworth MH, Weinbauer GF, Schlatt S, Nieschlag E. Identification of male germ cells undergoing apoptosis in adult rats. J Reprod Fertil. 1995; 105(1):25–33. Epub 1995/09/01. https://doi.org/10.1530/ jrf.0.1050025 PMID: 7490711.

42. Henriksen K, Hakovirta H, Parvinen M. Testosterone inhibits and induces apoptosis in rat seminiferous tubules in a stage-specific manner: in situ quantification in squash preparations after administration of ethane dimethane sulfonate. Endocrinology. 1995; 136(8):3285–91. Epub 1995/08/01. https://doi.org/ 10.1210/endo.136.8.7628362 PMID: 7628362.

43. Landis WJ. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone. 1995; 16(5):533–44. Epub 1995/05/ 01. https://doi.org/10.1016/8756-3282(95)00076-p PMID: 7654469.

44. Chen L, Jacquet R, Lowder E, Landis WJ. Refinement of collagen-mineral interaction: a possible role for osteocalcin in apatite crystal nucleation, growth and development. Bone. 2015; 71:7–16. Epub 2014/ 10/07. https://doi.org/10.1016/j.bone.2014.09.021 PMID: 25284158.

45. Sekita A, Matsugaki A, Ishimoto T, Nakano T. Synchronous disruption of anisotropic arrangement of the osteocyte network and collagen/apatite in melanoma bone metastasis. J Struct Biol. 2017; 197 (3):260–70. Epub 2016/12/19. https://doi.org/10.1016/j.jsb.2016.12.003 PMID: 27989794.

46. Wang J, Ishimoto T, Nakano T. Unloading-Induced Degradation of the Anisotropic Arrangement of Collagen/Apatite in Rat Femurs. Calcified Tissue Int. 2017; 100(1):87–94. Epub 2016/10/25. https://doi. org/10.1007/s00223-016-0200-0 PMID: 27771736.

47. Raghavan M, Sahar ND, Wilson RH, Mycek MA, Pleshko N, Kohn DH, et al. Quantitative polarized Raman spectroscopy in highly turbid bone tissue. J Biomed Opt. 2010; 15(3):037001. Epub 2010/07/ 10. https://doi.org/10.1117/1.3426310 PMID: 20615030; PubMed Central PMCID: PMC2881928.

48. Ishimoto T, Nakano T, Umakoshi Y, Yamamoto M, Tabata Y. Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using recombinant bone morphogenetic protein-2. J Bone Miner Res. 2013; 28(5):1170–9. Epub 2012/11/28. https:// doi.org/10.1002/jbmr.1825 PMID: 23184575.

49. Glimcher MJ. Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys. 1959; 31:359–93.

50. Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater. 2003; 2(3):164–8. Epub 2003/03/04. https://doi.org/10.1038/nmat832 PMID: 12612673.

51. Hauschka PV, Carr SA. Calcium-dependent alpha-helical structure in osteocalcin. Biochemistry. 1982; 21(10):2538–47. Epub 1982/05/11. https://doi.org/10.1021/bi00539a038 PMID: 6807342.

52. Yang Y, Cui Q, Sahai N. How does bone sialoprotein promote the nucleation of hydroxyapatite? A molecular dynamics study using model peptides of different conformations. Langmuir: the ACS journal of surfaces and colloids. 2010; 26(12):9848–59. Epub 2010/05/05. https://doi.org/10.1021/la100192z PMID: 20438109.

53. Im J-A, Yu B-P, Jeon JY, Kim S-H. Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clinica Chimica Acta. 2008; 396(1):66–9.

54. Ferna´ndez-Real JM, Izquierdo M, Ortega F, Gorostiaga E, Gomez-Ambrosi J, Moreno-Navarrete JM, et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocr Metab. 2009; 94(1):237–45. https://doi.org/ 10.1210/jc.2008-0270 PMID: 18854399

55. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocr Metab. 2009; 94(1):45–9. https://doi.org/10.1210/jc.2008-1455 PMID: 18984661

56. Kindblom JM, Ohlsson C, Ljunggren O¨ , Karlsson MK, Tivesten Å, Smith U, et al. Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res. 2009; 24 (5):785–91. https://doi.org/10.1359/jbmr.081234 PMID: 19063687

57. Pittas AG, Harris SS, Eliades M, Stark P, Dawson-Hughes B. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocr Metab. 2009; 94(3):827–32. https://doi.org/10. 1210/jc.2008-1422 PMID: 19088165

58. Zhou M, Ma X, Li H, Pan X, Tang J, Gao Y, et al. Serum osteocalcin concentrations in relation to glucose and lipid metabolism in Chinese individuals. Eur J Endocrinol. 2009; 161(5):723–9. https://doi.org/ 10.1530/EJE-09-0585 PMID: 19671707

59. Lumachi F, Camozzi V, Tombolan V, Luisetto G. Bone Mineral Density, Osteocalcin, and Bone-specific Alkaline Phosphatase in Patients with Insulin-dependent Diabetes Mellitus. Ann NY Acad Sci. 2009; 1173(s1):E64–E7.

60. Movahed A, Larijani B, Nabipour I, Kalantarhormozi M, Asadipooya K, Vahdat K, et al. Reduced serum osteocalcin concentrations are associated with type 2 diabetes mellitus and the metabolic syndrome components in postmenopausal women: the crosstalk between bone and energy metabolism. J Bone Miner Metab. 2012; 30(6):683–91. https://doi.org/10.1007/s00774-012-0367-z PMID: 22752126

61. Wang Y, Liu W, Masuyama R, Fukuyama R, Ito M, Zhang Q, et al. Pyruvate dehydrogenase kinase 4 induces bone loss at unloading by promoting osteoclastogenesis. Bone. 2012; 50(1):409–19. Epub 2011/08/02. https://doi.org/10.1016/j.bone.2011.07.012 PMID: 21803180.

62. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997; 89 (5):755–64. Epub 1997/05/30. https://doi.org/10.1016/s0092-8674(00)80258-5 PMID: 9182763.

63. Moriishi T, Fukuyama R, Ito M, Miyazaki T, Maeno T, Kawai Y, et al. Osteocyte network; a negative regulatory system for bone mass augmented by the induction of rankl in osteoblasts and sost in osteocytes at unloading. PLoS One. 2012; 7(6):e40143. Epub 2012/07/07. https://doi.org/10.1371/journal.pone. 0040143 PMID: 22768243; PubMed Central PMCID: PMC3387151.

64. Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K, et al. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev. 2004; 18(8):952–63. Epub 2004/04/27. https://doi.org/10.1101/gad.1174704 [pii]. PMID: 15107406; PubMed Central PMCID: PMC395853.

65. Liu W, Toyosawa S, Furuichi T, Kanatani N, Yoshida C, Liu Y, et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol. 2001; 155(1):157–66. Epub 2001/10/03. https://doi.org/10.1083/jcb.200105052 [pii]. PMID: 11581292; PubMed Central PMCID: PMC2150799.

66. Umeno A, Kotani H, Iwasaki M, Ueno S. Quantification of adherent cell orientation and morphology under strong magnetic fields. IEEE Trans Magn. 2001; 37(4):2909–11. https://doi.org/10.1109/20. 951344

67. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992; 7(6):1564–83.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る