リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Fabrication of initial trabecular bone inspired three-dimensional structure with cell membrane nanofragments」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Fabrication of initial trabecular bone inspired three-dimensional structure with cell membrane nanofragments

Kadoya, Koichi 大阪大学

2022.11.02

概要

The extracellular matrix of trabecular bone has a large surface exposed to the bone marrow and plays important roles such as hematopoietic stem cell niche formation and maintenance. In vitro reproduction of trabecular bone microenvironment would be valuable not only for developing a functional scaffold for bone marrow tissue engineering but also for understanding its biological functions. Herein, we analyzed and reproduced the initial stages of trabecular bone formation in mouse femur epiphysis. We identified that the trabecular bone formation progressed through the following steps: (1) partial rupture of hypertrophic chondrocytes; (2) calcospherite formation on cell nanofragments (CNFs) derived from the ruptured cell membranes; and (3) calcospherite growth and fusion to form the initial three-dimensional (3D) structure of trabecular bones. For reproducing the initial trabecular bone formation in vitro, we collected CNFs from cultured cells and used as nucleation sites for biomimetic calcospherite formation. Strikingly, almost the same 3D structure of the initial trabecular bone could be obtained in vitro by using additional CNFs as a binder to fuse biomimetic calcospherites.

この論文で使われている画像

参考文献

[1] Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 2006;8:455-98.

[2] Hata K, Takahata Y, Murakami T, Nishimura R. Transcriptional Network Controlling Endochondral Ossification. J Bone Metab 2017;24:75-82.

[3] Shi Y, He G, Lee WC, McKenzie JA, Silva MJ, Long F. Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat Commun 2017;8:2043.

[4] Wang C, Abu-Amer Y, O'Keefe RJ, Shen J. Loss of Dnmt3b in Chondrocytes Leads to Delayed Endochondral Ossification and Fracture Repair. J Bone Miner Res 2018;33:283-97.

[5] Suzuki N, Ohneda O, Minegishi N, Nishikawa M, Ohta T, Takahashi S, Engel JD, Yamamoto M. Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proc Natl Acad Sci U S A 2006;103:2202-7.

[6] Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014;505:327-34.

[7] Chubb R, Oh J, Riley AK, Kimura T, Wu SM, Wu JY. In Vivo Rescue of the Hematopoietic Niche By Pluripotent Stem Cell Complementation of Defective Osteoblast Compartments. Stem Cells 2017;35:2150-9.

[8] Allocca G, Hughes R, Wang N, Brown HK, Ottewell PD, Brown NJ, Holen I. The bone metastasis niche in breast cancer-potential overlap with the haematopoietic stem cell niche in vivo. J Bone Oncol 2019;17:100244.

[9] Curtis KJ, Mai C, Martin H, Oberman AG, Alderfer L, Romero-Moreno R, Walsh M, Mitros SF, Thomas SG, Dynako JA, Zimmer DI, McNamara LM, Littlepage LE, Niebur GL. The effect of marrow secretome and culture environment on the rate of metastatic breast cancer cell migration in two and three dimensions. Mol Biol Cell 2021;32:1009-19.

[10] CraneGM, Ishaug SL, Mikos AG. Bone tissue engineering. Nat Med 1995;1:1322-4.

[11] Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv 2019;9:26252-62.

[12] Choi JS, Harley BA. The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials 2012;33:4460-8.

[13] Hara ES, Okada M, Nagaoka N, Nakano T, Matsumoto T. Re-Evaluation of Initial Bone Mineralization from an Engineering Perspective. Tissue Eng Part B Rev. 2022;28:246-55.

[14] Hara ES, Okada M, Nagaoka N, Hattori T, Iida LM, Kuboki T, Nakano T, Matsumoto T. Chondrocyte burst promotes space for mineral expansion. Integr Biol (Camb) 2018;10:57-66.

[15] Hara ES, Okada M, Kuboki T, Nakano T, Matsumoto T. Rapid bioinspired mineralization using cell membrane nanofragments and alkaline milieu. J Mater Chem B 2018;6:6153-61.

[16] Akhter MN, Hara ES, Kadoya K, Okada M, Matsumoto T. Cellular Fragments as Biomaterial for Rapid In Vitro Bone-Like Tissue Synthesis. Int J Mol Sci 2020;21:5327.

[17] Hara ES, Okada M, Nagaoka N, Hattori T, Kuboki T, Nakano T, Matsumoto T. Bioinspired Mineralization Using Chondrocyte Membrane Nanofragments. ACS Biomater Sci Eng 2018;4:617-25.

[18] Anderson HC. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 1969;41:59-72.

[19] Anderson HC, Garimella R, Tague SE. The role of matrix vesicles in growth plate development and biomineralization. Front Biosci 2005;10:822-37.

[20] Ono N, Ono W, Mizoguchi T, Nagasawa T, Frenette PS, Kronenberg HM. Vasculature- associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. Dev Cell 2014;29:330-9.

[21] Kiuru M, Hidaka C, Hubner RH, Solomon J, Krause A, Leopold PL, Crystal RG. Sonic hedgehog expands diaphyseal trabecular bone altering bone marrow niche and lymphocyte compartment. Mol Ther 2009;17:1442-52.

[22] Haider MT, Smit DJ, Taipaleenmäki H. The Endosteal Niche in Breast Cancer Bone Metastasis. Front Oncol. 2020;10:335.

[23] Allocca G, Hughes R, Wang N, Brown HK, Ottewell PD, Brown NJ, Holen I. The bone metastasis niche in breast cancer-potential overlap with the haematopoietic stem cell niche in vivo. J Bone Oncol 2019;17:100244.

[24] Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond) 2019;39:76.

[25] Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003;425:841-6.

[26] Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011;9:298-310.

[27] He F, Chiou AE, Loh HC, Lynch M, Seo BR, Song YH, Lee MJ, Hoerth R, Bortel EL, Willie BM, Duda GN, Estroff LA, Masic A, Wagermaier W, Fratzl P. Multiscale characterization of the mineral phase at skeletal sites of breast cancer metastasis. Proc Natl Acad Sci U S A 2017;114:10542-7.

[28] Mahadik BP, Bharadwaj NA, Ewoldt RH, Harley BA. Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. Biomaterials 2017;125:54-64.

[29] Takeshita T, Matsuura Y, Arakawa S, Okamoto M. Biomineralization of Hydroxyapatite on DNA Molecules in SBF: Morphological Features and Computer Simulation. Langmuir 2013;29: 11975-11981.

[30] Bertran O, del Valle LJ, Revilla-Lopez G, Chaves G, Cardus L, Casas MT, Casanovas J, Turon P, Puiggali J, Aleman C. Mineralization of DNA into nanoparticles of hydroxyapatite. Dalton Trans 2014;43:317-327.

[31] Cyboron GW, Wuthier RE. Purification and initial characterization of intrinsic membrane-bound alkaline phosphatase from chicken epiphyseal cartilage. J Biol Chem 1981;256:7262-7268.

[32] Suski JM, Lebiedzinska M, Wojtala A, Duszynski J, Giorgi C, Pinton P, Wieckowski MR. Isolation of plasma membrane-associated membranes from rat liver. Nat Protoc 2014;9:312-322.

[33] Kunitomi Y, Hara ES, Okada M, Nagaoka N, Kuboki T, Nakano T, Kamioka H, Matsumoto T. Biomimetic mineralization using matrix vesicle nanofragments. J Biomed Mater Res A 2019;107:1021-30.

[34] Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004;32:477- 86.

[35] Widmer MS, Gupta PK, Lu L, Meszlenyi RK, Evans GR, Brandt K, Savel T, Gurlek A, Patrick CW Jr., Mikos AG. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials 1998;19:1945-55.

[36] Cheng A, Schwartz Z, Kahn A, Li X, Shao Z, Sun M, Ao Y, Boyan BD, Chen H. Advances in Porous Scaffold Design for Bone and Cartilage Tissue Engineering and Regeneration. Tissue Eng Part B Rev. 2019;25:14-29.

[37] Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005;4:518-24.

[38] Cummings LJ, Snyder MA, Brisack K. Protein chromatography on hydroxyapatite columns. Methods Enzymol 2009;463:387-404.

[39] Boskey AL. Mineral-matrix interactions in bone and cartilage. Clin Orthop Relat Res 1992;(281):244-74.

[40] Boanini E, Torricelli P, Gazzano M, Giardino R, Bigi A. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomaterials 2006;27:4428-33.

[41] Matsumoto T, Okazaki M, Inoue M, Hamada Y, Taira M, Takahashi J. Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid. Biomaterials 2002;23:2241-7.

[42] Matsumoto T, Okazaki M, Inoue M, Yamaguchi S, Kusunose T, Toyonaga T, Hamada Y, Takahashi J. Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials 2004;25:3807-12.

[43] Iwamoto M, Ohta Y, Larmour C, Enomoto-Iwamoto M. Toward regeneration of articular cartilage. Birth Defects Res C Embryo Today 2013;99:192-202.

[44] Gilchrist AE, Lee S, Hu Y, Harley BAC. Soluble Signals and Remodeling in a Synthetic Gelatin- Based Hematopoietic Stem Cell Niche. Adv Healthc Mater 2019;8:e1900751.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る