リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Increased expression of dermal LL-37 may trigger migration of CCR-7+regulatory T cells in extramammary Paget’s disease」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Increased expression of dermal LL-37 may trigger migration of CCR-7+regulatory T cells in extramammary Paget’s disease

LYU CHUNBING 東北大学

2021.03.25

概要

Background
Since extramammary Paget’s disease (EMPD) is a skin adenocarcinoma of apocrine gland origin, the biological behavior of EMPD is similar to that of breast cancer. Invasive EMPD frequently metastasizes to lymph nodes, liver, lung and even brain. Therefore, an appropriate marker to distinguish in situ from dermal invasive EMPD in the early stage is needed. Since dermal LL-37 expression is augmented by stimulation with IL-17, and since Paget’s cells produce CCL-20 to recruit Th17 in the lesional skin of EMPD, in this report, we hypothesized that LL-37 in the dermis is augmented in invasive EMPD.

Methods
We first employed immunohistochemical (IHC) staining of LL-37 in 15 cases of invasive and 11 cases non-invasive EMPD to evaluate the expression levels of LL-37 by digital microscope. Next, to evaluate the immunomodulatory effects of LL-37 on tumor- associated macrophages (TAMs) distributed in the dermis of the lesional skin of EMPD, we stimulated monocyte-derived M2 macrophages by LL-37 and measured the production of immunosuppressive chemokines using ELISA in vitro. Then, we further evaluated the serum level of these chemokine of EMPD patients.

Results
Quantitative analysis of IHC staining revealed that LL-37-expressing myeloid cells in dermis were significantly more in invasive EMPD than in non-invasive EMPD. Moreover, CD163+M2 macrophages produced CCL-19 and CCL-21 by LL-37 stimulation in vitro, suggesting that these chemokines might be produced by CD163+TAMs to recruit CCR- 7+regulatory T cells in the lesional skin of invasive EMPD. Indeed, immunofluorescence staining (IF) and IHC staining showed that substantial numbers of CD163+TAMs expressed CCL-19 and CCL-21 in the lesional skin of invasive EMPD. In addition, IHC staining revealed that CCR-7 positive cells (including regulatory T cells) were located within lymphatic vessels in the lesional skin of invasive EMPD. Furthermore, the serum levels of CCL-19 and CCL-21 were significantly increased in invasive EMPD patients compared to non-invasive EMPD patients.

Conclusion
The present study shows that TAMs around lymphatic vessels or small blood vessels produce LL-37 that stimulate the production of CCL-19 and CCL-21. These chemokines recruit CCR-7 +Tregs, which may play a role in the development of immunosuppressive microenvironment of invasive EMPD. These results suggest the potential of IL-17 blockade therapy to restore the immunosuppressive environment.

この論文で使われている画像

参考文献

1. Heymann, W.R., Extramammary Paget's disease. Clin Dermatol, 1993. 11(1): p. 83-7.

2. Khan, Y.S., A. Farhana, and H. Sajjad, Anatomy, Thorax, Mammary Gland, in StatPearls [Internet]. 2019, StatPearls Publishing.

3. Shiomi, T., et al., Clinicopathological study of invasive extramammary Paget's disease: subgroup comparison according to invasion depth. J Eur Acad Dermatol Venereol, 2013. 27(5): p. 589-92.

4. Ghazawi, F.M., et al., Trends in incidence of cutaneous malignant melanoma in Canada: 1992-2010 versus 2011-2015. J Am Acad Dermatol, 2019. 80(4): p. 1157-1159.

5. Ghazawi, F.M., et al., Demographic and clinical characteristics of extramammary Paget's disease patients in Japan from 2000 to 2019. J Eur Acad Dermatol Venereol, 2020.

6. Maeda, T., et al., Extramammary Paget's disease patient-derived xenografts harboring ERBB2 S310F mutation show sensitivity to HER2-targeted therapies. Oncogene, 2020. 39(36): p. 5867-5875.

7. Tanese, K., et al., Updates on the Systemic Treatment of Advanced Non- melanoma Skin Cancer. Front Med (Lausanne), 2019. 6: p. 160.

8. Kambayashi, Y., et al., The Possible Interaction between Receptor Activator of Nuclear Factor Kappa-B Ligand Expressed by Extramammary Paget Cells and its Ligand on Dermal Macrophages. J Invest Dermatol, 2015. 135(10): p. 2547- 2550.

9. Nowak, M.A., et al., Perianal Paget's disease: Distinguishing primary and secondary lesions using ummunohistochemical studies including gross cystic disease fluid protein-15 and cytokeratin 20 expression. Archives of pathology & laboratory medicine, 1998. 122(12): p. 1077.

10. Ohnishi, T. and S. Watanabe, The use of cytokeratins 7 and 20 in the diagnosis of primary and secondary extramammary Paget's disease. Br J Dermatol, 2000. 142(2): p. 243-7.

11. Fujimura, T., et al., RANKL expression is a useful marker for differentiation of pagetoid squamous cell carcinoma in situ from extramammary Paget disease. J Cutan Pathol, 2016. 43(9): p. 772-5.

12. Durr, U.H., U.S. Sudheendra, and A. Ramamoorthy, LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta, 2006. 1758(9): p. 1408-25.

13. Hancock, R.E., Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis, 2001. 1(3): p. 156-64.

14. Wiesner, J. and A. Vilcinskas, Antimicrobial peptides: the ancient arm of the human immune system. Virulence, 2010. 1(5): p. 440-64.

15. Burton, M.F. and P.G. Steel, The chemistry and biology of LL-37. Nat Prod Rep, 2009. 26(12): p. 1572-84.

16. Takahashi, T., et al., Cathelicidin promotes inflammation by enabling binding of self-RNA to cell surface scavenger receptors. Sci Rep, 2018. 8(1): p. 4032.

17. Chamilos, G., et al., Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL-37. Blood, 2012. 120(18): p. 3699-707.

18. Fabriek, B.O., C.D. Dijkstra, and T.K. van den Berg, The macrophage scavenger receptor CD163. Immunobiology, 2005. 210(2-4): p. 153-60.

19. Lau, S.K., P.G. Chu, and L.M. Weiss, CD163A specific marker of macrophages in paraffin-embedded tissue samples. American journal of clinical pathology, 2004. 122(5): p. 794-801.

20. Van Gorp, H., P.L. Delputte, and H.J. Nauwynck, Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol Immunol, 2010. 47(7-8): p. 1650-60.

21. Fuentes‐Duculan, J., et al., Autoantigens ADAMTSL 5 and LL 37 are significantly upregulated in active Psoriasis and localized with keratinocytes, dendritic cells and other leukocytes. Experimental dermatology, 2017. 26(11): p. 1075-1082.

22. Lande, R., et al., The antimicrobial peptide LL-37 is a T-cell autoantigen in psoriasis. Nat Commun, 2014. 5(1): p. 5621.

23. Furue, M. and T. Kadono, The contribution of IL-17 to the development of autoimmunity in psoriasis. Innate Immun, 2019. 25(6): p. 337-343.

24. Wu, L., et al., A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4-ERK5 axis. J Exp Med, 2015. 212(10): p. 1571-87.

25. Chen, C. and F.H. Gao, Th17 Cells Paradoxical Roles in Melanoma and Potential Application in Immunotherapy. Front Immunol, 2019. 10: p. 187.

26. Sato, Y., et al., Malassezia-derived aryl hydrocarbon receptor ligands enhance the CCL-20/Th17/soluble CD163 pathogenic axis in extra-mammary Paget's disease. Exp Dermatol, 2019. 28(8): p. 933-939.

27. Nardinocchi, L., et al., Interleukin-17 and interleukin-22 promote tumor progression in human nonmelanoma skin cancer. Eur J Immunol, 2015. 45(3): p. 922-31.

28. Gasparoto, T.H., et al., Inflammatory events during murine squamous cell carcinoma development. J Inflamm (Lond), 2012. 9(1): p. 46.

29. Sato, Y., et al., Possible Roles of Proinflammatory Signaling in Keratinocytes Through Aryl Hydrocarbon Receptor Ligands for the Development of Squamous Cell Carcinoma. Front Immunol, 2020. 11: p. 534323.

30. Muranski, P., et al., Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity, 2011. 35(6): p. 972-85.

31. Wang, L., et al., IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. Journal of Experimental Medicine, 2009. 206(7): p. 1457- 1464.

32. Fujimura, T., et al., Treatment of Advanced Melanoma: Past, Present and Future. Life (Basel), 2020. 10(9): p. 208.

33. Ishii, M., et al., Anti-PD-1 antibody therapy for epithelial skin malignancies: An investigator-initiated, open-label, single-arm, multicenter, phase II clinical trial (NMSC-PD1 Study). Medicine (Baltimore), 2020. 99(44): p. e22913.

34. Fujimura, T., et al., Receptor Activator of NF-kappaB Ligand Promotes the Production of CCL17 from RANK+M2 Macrophages. J Invest Dermatol, 2015. 135(11): p. 2884-2887.

35. Fujimura, T., et al., Possible mechanisms of the crosstalk between Langerhans cells and regulatory T cells in extramammary Paget disease by receptor activator of nuclear factor kappa B (RANK) ligand/RANK pathways. Br J Dermatol, 2017. 176(2): p. 387-394.

36. Fujimura, T., et al., A novel technique to diagnose non-melanoma skin cancer by thermal conductivity measurements: Correlations with cancer stromal factors. Exp Dermatol, 2019. 28(9): p. 1029-1035.

37. Liu, T., et al., The IL-23/IL-17 Pathway in Inflammatory Skin Diseases: From Bench to Bedside. Front Immunol, 2020. 11: p. 594735.

38. Fujimura, T., et al., Tumor-Associated Macrophages: Therapeutic Targets for Skin Cancer. Front Oncol, 2018. 8: p. 3.

39. Li, N., et al., Alarmin function of cathelicidin antimicrobial peptide LL-37 through IL-36γ induction in human epidermal keratinocytes. The Journal of Immunology, 2014. 193(10): p. 5140-5148.

40. Cristiani, C.M., et al., Accumulation of Circulating CCR-7(+) Natural Killer Cells Marks Melanoma Evolution and Reveals a CCL19-Dependent Metastatic Pathway. Cancer Immunol Res, 2019. 7(5): p. 841-852.

41. Fankhauser, M., et al., Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma. Sci Transl Med, 2017. 9(407).

42. Fujimura, T., et al., Comparison of Foxp3+regulatory T cells and CD163+macrophages in invasive and non-invasive extramammary Paget's disease. Acta Derm Venereol, 2012. 92(6): p. 625-8.

43. Iga, N., et al., Accumulation of exhausted CD8+T cells in extramammary Paget's disease. PLoS One, 2019. 14(1): p. e0211135.

44. Karpathiou, G., et al., Expression of CD3, PD-L1 and CTLA-4 in mammary and extra-mammary Paget disease. Cancer Immunol Immunother, 2018. 67(8): p. 1297-1303.

45. Mai, R., et al., Transcriptome analyses reveal FOXA1 dysregulation in mammary and extramammary Paget's disease. Hum Pathol, 2018. 77: p. 152-158.

46. Fletcher, J. and M. Haniffa, Mechanisms of immune evasion in extramammary Paget disease. Br J Dermatol, 2017. 176(2): p. 293-294.

47. Brembilla, N.C., L. Senra, and W.H. Boehncke, The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond. Front Immunol, 2018. 9: p. 1682.

48. Dainichi, T. and K. Kabashima, Interaction of Psoriasis and Bullous Diseases. Front Med (Lausanne), 2018. 5: p. 222.

49. Pickens, S.R., et al., Characterization of CCL-19 and CCL-21 in rheumatoid arthritis. Arthritis Rheum, 2011. 63(4): p. 914-22.

50. Bosè, F., et al., Inhibition of CCR-7/CCL-19 axis in lesional skin is a critical event for clinical remission induced by TNF blockade in patients with psoriasis. The American Journal of Pathology, 2013. 183(2): p. 413-421.

51. Picchio, M.C., et al., CXCL13 is highly produced by Sezary cells and enhances their migratory ability via a synergistic mechanism involving CCL-19 and CCL- 21 chemokines. Cancer Res, 2008. 68(17): p. 7137-46.

52. Basile, J., et al., Chemokine receptor expression in non-melanoma skin cancer. J Cutan Pathol, 2008. 35(7): p. 623-9.

53. Tan, W., et al., Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature, 2011. 470(7335): p. 548-53.

54. Sato, K., et al., Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med, 2006. 203(12): p. 2673- 82.

55. Zeng, B., et al., ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis, 2019. 10(4): p. 315.

56. Hu, S., et al., IL-17 Production of Neutrophils Enhances Antibacteria Ability but Promotes Arthritis Development During Mycobacterium tuberculosis Infection. EBioMedicine, 2017. 23: p. 88-99.

57. Roark, C.L., et al., gammadelta T cells: an important source of IL-17. Curr Opin Immunol, 2008. 20(3): p. 353-7.

58. Peric, M., et al., IL-17A enhances vitamin D3-induced expression of cathelicidin antimicrobial peptide in human keratinocytes. J Immunol, 2008. 181(12): p. 8504-12.

59. Thomi, R., et al., Elevated levels of the antimicrobial peptide LL-37 in hidradenitis suppurativa are associated with a Th1/Th17 immune response. Exp Dermatol, 2018. 27(2): p. 172-177.

60. Worbs, T. and R. Forster, A key role for CCR-7 in establishing central and peripheral tolerance. Trends Immunol, 2007. 28(6): p. 274-80.

61. Schumann, K., et al., Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity, 2010. 32(5): p. 703-13.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る