リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Extracellular laminin regulates hematopoietic potential of pluripotent stem cells through integrin β1-ILK-β-catenin-JUN axis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Extracellular laminin regulates hematopoietic potential of pluripotent stem cells through integrin β1-ILK-β-catenin-JUN axis

Yuzuriha, Akinori Nakamura, Sou Sugimoto, Naoshi Kihara, Shunsuke Nakagawa, Masato Yamamoto, Takuya Sekiguchi, Kiyotoshi Eto, Koji 京都大学 DOI:10.1016/j.scr.2021.102287

2021.05

概要

Recombinant matrices have enabled feeder cell-free maintenance cultures of human pluripotent stem cells (hPSCs), with laminin 511-E8 fragment (LM511-E8) being widely used. However, we herein report that hPSCs maintained on LM511-E8 resist differentiating to multipotent hematopoietic progenitor cells (HPCs), unlike hPSCs maintained on LM421-E8 or LM121-E8. The latter two LM-E8s bound weakly to hPSCs compared with LM511-E8 and activated the canonical Wnt/β-catenin signaling pathway. Moreover, the extracellular LM-E8-dependent preferential hematopoiesis was associated with a higher expression of integrin β1 (ITGB1) and downstream integrin-linked protein kinase (ILK), β-catenin and phosphorylated JUN. Accordingly, the lower coating concentration of LM511-E8 or addition of a Wnt/β-catenin signaling activator, CHIR99021, facilitated higher HPC yield. In contrast, the inhibition of ILK, Wnt or JNK by inhibitors or mRNA knockdown suppressed the HPC yield. These findings suggest that extracellular laminin scaffolds modulate the hematopoietic differentiation potential of hPSCs by activating the ITGB1-ILK-β-catenin-JUN axis at the undifferentiated stage. Finally, the combination of low-concentrated LM511-E8 and a revised hPSC-sac method, which adds bFGF, SB431542 and heparin to the conventional method, enabled a higher yield of HPCs and higher rate for definitive hematopoiesis, suggesting a useful protocol for obtaining differentiated hematopoietic cells from hPSCs in general.

この論文で使われている画像

参考文献

Boisset, J.C., Van Cappellen, W., Andrieu-Soler, C., Galjart, N., Dzierzak, E., Robin, C.,

2010. In vivo imaging of haematopoietic cells emerging from the mouse aortic

endothelium. Nature 464, 116–120. https://doi.org/10.1038/nature08764.

Burkhalter, R.J., Symowicz, J., Hudson, L.G., Gottardi, C.J., Stack, M.S., 2011. Integrin

regulation of β-catenin signaling in ovarian carcinoma. J. Biol. Chem. 286,

23467–23475. https://doi.org/10.1074/jbc.M110.199539.

Chao, M.P., Gentles, A.J., Chatterjee, S., Lan, F., Reinisch, A., Corces, M.R., Xavy, S.,

Shen, J., Haag, D., Chanda, S., Sinha, R., Morganti, R.M., Nishimura, T., Ameen, M.,

Wu, H., Wernig, M., Wu, J.C., Majeti, R., 2017. Human AML-iPSCs Reacquire

Leukemic Properties after Differentiation and Model Clonal Variation of Disease. Cell

Stem Cell 20, 329–344.e7. https://doi.org/10.1016/j.stem.2016.11.018.

Ditadi, A., Sturgeon, C.M., Tober, J., Awong, G., Kennedy, M., Yzaguirre, A.D., Azzola, L.,

Ng, E.S., Stanley, E.G., French, D.L., Cheng, X., Gadue, P., Speck, N.A., Elefanty, A.

G., Keller, G., 2015. Human definitive haemogenic endothelium and arterial vascular

endothelium represent distinct lineages. Nat. Cell Biol. 17, 580–591. https://doi.

org/10.1038/ncb3161.

Doi, D., Samata, B., Katsukawa, M., Kikuchi, T., Morizane, A., Ono, Y., Sekiguchi, K.,

Nakagawa, M., Parmar, M., Takahashi, J., 2014. Isolation of Human Induced

Pluripotent Stem Cell-Derived Dopaminergic Progenitors by Cell Sorting for

Successful Transplantation. Stem Cell Reports 2, 337–350. https://doi.org/10.1016/

j.stemcr.2014.01.013.

Ekblom, P., Lonai, P., Talts, J.F., 2003. Expression and biological role of laminin-1.

Matrix Biol. 22, 35–47. https://doi.org/10.1016/S0945-053X(03)00015-5.

Eslin, D.E., Zhang, C., Samuels, K.J., Rauova, L., Zhai, L., Niewiarowski, S., Cines, D.B.,

Poncz, M., Kowalska, M.A., 2004. Transgenic mice studies demonstrate a role for

platelet factor 4 in thrombosis: Dissociation between anticoagulant and

antithrombotic effect of heparin. Blood 104, 3173–3180. https://doi.org/10.1182/

blood-2003-11-3994.

Flamme, I., Risau, W., 1992. Induction of vasculogenesis and hematopoiesis in vitro.

Development 116, 435–439.

Hansen, K., Abrass, C.K., 2003. Laminin-8/9 is synthesized by rat glomerular mesangial

cells and is required for PDGF-induced mesangial cell migration. Kidney Int. 64,

110–118. https://doi.org/10.1046/j.1523-1755.2003.00039.x.

Hansen, M., von Lindern, M., van den Akker, E., Varga, E., 2019. Human-induced

pluripotent stem cell-derived blood products: state of the art and future directions.

FEBS Lett. 593, 3288–3303. https://doi.org/10.1002/1873-3468.13599.

Hirata, S., Takayama, N., Jono-Ohnishi, R., Endo, H., Nakamura, S., Dohda, T., Nishi, M.,

Hamazaki, Y., Ishii, E.I., Kaneko, S., Otsu, M., Nakauchi, H., Kunishima, S., Eto, K.,

2013. Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective

MPL-mediated signaling. J. Clin. Invest. 123, 3802–3814. https://doi.org/10.1172/

JCI64721.

Huang, K., Wu, Z., Liu, Z., Hu, G., Yu, J., Chang, K.H., Kim, K.P., Le, T., Faull, K.F.,

Rao, N., Gennery, A., Xue, Z., Wang, C.Y., Pellegrini, M., Fan, G., 2014. Selective

demethylation and altered gene expression are associated with ICF syndrome in

human-induced pluripotent stem cells and mesenchymal stem cells. Hum. Mol.

Genet. 23, 6448–6457. https://doi.org/10.1093/hmg/ddu365.

Iriguchi, S., Yasui, Y., Kawai, Y., Arima, S., Kunitomo, M., Sato, T., Ueda, T.,

Minagawa, A., Mishima, Y., Yanagawa, N., Baba, Y., Miyake, Y., Nakayama, K.,

Takiguchi, M., Shinohara, T., Nakatsura, T., Yasukawa, M., Kassai, Y., Hayashi, A.,

Kaneko, S., 2021. A clinically applicable and scalable method to regenerate T-cells

from iPSCs for off-the-shelf T-cell immunotherapy. Nat. Commun. 12, 1–15. https://

doi.org/10.1038/s41467-020-20658-3.

Ito, Y., Nakamura, S., Sugimoto, N., Shigemori, T., Kato, Y., Ohno, M., Sakuma, S., Ito, K.,

Kumon, H., Hirose, H., Okamoto, H., Nogawa, M., Iwasaki, M., Kihara, S., Fujio, K.,

Matsumoto, T., Higashi, N., Hashimoto, K., Sawaguchi, A., Harimoto, K. ichi,

Nakagawa, M., Yamamoto, T., Handa, M., Watanabe, N., Nishi, E., Arai, F.,

Nishimura, S., Eto, K., 2018. Turbulence Activates Platelet Biogenesis to Enable

Clinical Scale Ex Vivo Production. Cell 1–13. 10.1016/j.cell.2018.06.011.

Kajiwara, M., Aoi, T., Okita, K., Takahashi, R., Inoue, H., Takayama, N., Endo, H., Eto, K.,

Toguchida, J., Uemoto, S., Yamanaka, S., 2012. Donor-dependent variations in

hepatic differentiation from human-induced pluripotent stem cells. Proc. Natl. Acad.

Sci. U. S. A. 109, 12538–12543. https://doi.org/10.1073/pnas.1209979109.

Khandanpour, C., Sharif-askari, E., Vassen, L., Gaudreau, M., Zhu, J., Paul, W.E.,

Okayama, T., Kosan, C., Mo, T., 2010. Evidence that Growth factor independence 1b

regulates dormancy and peripheral blood mobilization of hematopoietic stem cells.

Blood 116, 5149–5161. https://doi.org/10.1182/blood-2010-04-280305.The.

Kitajima, K., Nakajima, M., Kanokoda, M., Kyba, M., Dandapat, A., Tolar, J., Saito, M.K.,

Toyoda, M., Umezawa, A., Hara, T., 2016. GSK3β inhibition activates the CDX/HOX

pathway and promotes hemogenic endothelial progenitor differentiation from

human pluripotent stem cells. Exp. Hematol. 44, 68–74.e10. https://doi.org/

10.1016/j.exphem.2015.09.007.

Koyanagi-Aoi, M., Ohnuki, M., Takahashi, K., Okita, K., Noma, H., Sawamura, Y.,

Teramoto, I., Narita, M., Sato, Y., Ichisaka, T., Amanoa, N., Watanabe, A.,

Morizane, A., Yamada, Y., Sato, T., Takahashi, J., Yamanaka, S., 2013.

Differentiation-defective phenotypes revealed by large-scale analyses of human

pluripotent stem cells. Proc. Natl. Acad. Sci. U. S. A. 110, 20569–20574. https://doi.

org/10.1073/pnas.1319061110.

Loughran, S.J., Kruse, E.A., Hacking, D.F., Graaf, C.A. De, Hyland, C.D., Willson, T.A.,

Henley, K.J., Ellis, S., Voss, A.K., Metcalf, D., Hilton, D.J., Alexander, W.S., Kile, B.T.,

2008. The transcription factor Erg is essential for definitive hematopoiesis and the

function of adult hematopoietic stem cells. Nat. Immunol. 9, 810-. https://doi.org/

10.1038/ni.1617.

Minagawa, A., Yoshikawa, T., Yasukawa, M., Hotta, A., Kunitomo, M., Iriguchi, S.,

Takiguchi, M., Kassai, Y., Imai, E., Yasui, Y., Kawai, Y., Zhang, R., Uemura, Y.,

5. Conclusions

We succeeded in improving hematopoietic differentiation and

identifying optimal external environmental conditions for the mainte­

nance culture of hPSCs. We found the interaction between extracellular

matrix laminin and ITGB1 expressed on the hPSC surface modulates the

downstream ILK-canonical Wnt/β-catenin-pJUN signaling cascade to

have a significant effect on hematopoiesis. These results show that the

extracellular scaffolds used during the maintenance phase determine the

differentiation fate of hPSCs and might explain the discrepancies in

experimental results between laboratories that use the same differenti­

ation methods but different extracellular scaffolds in the maintenance

culture. Moreover, these findings will be useful for developing individ­

ualized medicine by regulating the differentiation capacity of patientderived hPSCs by simply changing the scaffold without any gene edit­

ing. Furthermore, by changing the concentration of the LM511-E8

extracellular environment and also adding bFGF, TGF-β, and heparin

reagents to the conventional hPSC-sac method, we succeeded in accel­

erating the production of definitive hematopoiesis and its yield. In the

basic research field of hematology, this study provides an easy and

efficient method to obtain HPCs and more definitive hematopoiesis in

vitro. This study thus should contribute to the development of regener­

ative medicine using hematopoietic lineages.

Declaration of Competing Interest

A.Y., S.N., K.S., and K.E. have applied for patents related to this

manuscript. K.S. is a cofounder and a shareholder of MATRIXOME, Inc.

K.E. is a founder of Megakaryon and a member of its scientific advisory

board without salary; the interests of K.E. were reviewed and are

managed by Kyoto University in accordance with its conflict-of-interest

policies.

Acknowledgments

The authors thank Ms. Toshie Kusunoki for assisting with the ex­

periments, Dr. Yoshihiro Iwamoto for technical advice, and Dr. Peter

Karagiannis for critical reading of the manuscript.

This work was supported in part by the Highway Program for Real­

ization of Regenerative Medicine (JP18bm0504008, K.E.) and the Core

Center for iPS Cell Research (JP18bm0104001, N.S, S.N., K.E.) from the

Japan Agency for Medical Research and Development (AMED), and by

Grant-in-Aid for JSPS fellow (JP18J14237, A.Y.) and for scientific

research (18H04164, K.E.) from the Japan Society for the Promotion of

Science (JSPS).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.

org/10.1016/j.scr.2021.102287.

12

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Stem Cell Research 53 (2021) 102287

A. Yuzuriha et al.

Miyoshi, H., Nakanishi, M., Watanabe, A., Hayashi, A., Kawana, K., Fujii, T.,

Nakatsura, T., Kaneko, S., 2018. Enhancing T Cell Receptor Stability in Rejuvenated

iPSC-Derived T Cells Improves Their Use in Cancer Immunotherapy. Cell Stem Cell

23, 850–858.e4. https://doi.org/10.1016/j.stem.2018.10.005.

Miyauchi, M., Koya, J., Arai, S., Yamazaki, S., Honda, A., Kataoka, K., Yoshimi, A.,

Taoka, K., Kumano, K., Kurokawa, M., 2018. ADAM8 Is an Antigen of Tyrosine

Kinase Inhibitor-Resistant Chronic Myeloid Leukemia Cells Identified by PatientDerived Induced Pluripotent Stem Cells. Stem Cell Reports 10, 1115–1130. https://

doi.org/10.1016/j.stemcr.2018.01.015.

Miyazaki, T., Futaki, S., Suemori, H., Taniguchi, Y., Yamada, M., Kawasaki, M.,

Hayashi, M., Kumagai, H., Nakatsuji, N., Sekiguchi, K., Kawase, E., 2012. Laminin E8

fragments support efficient adhesion and expansion of dissociated human

pluripotent stem cells. Nat. Commun. 3, 1236. https://doi.org/10.1038/

ncomms2231.

Miyazaki, T., Isobe, T., Nakatsuji, N., Suemori, H., 2017. Efficient Adhesion Culture of

Human Pluripotent Stem Cells Using Laminin Fragments in an Uncoated Manner.

Sci. Rep. 7, 41165. https://doi.org/10.1038/srep41165.

Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K.,

Morizane, A., Doi, D., Takahashi, J., Nishizawa, M., Yoshida, Y., Toyoda, T.,

Osafune, K., Sekiguchi, K., Yamanaka, S., 2015. A novel efficient feeder-free culture

system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4, 3594.

https://doi.org/10.1038/srep03594.

Nakamura, S., Takayama, N., Hirata, S., Seo, H., Endo, H., Ochi, K., Fujita, K., Koike, T.,

Harimoto, K., Dohda, T., Watanabe, A., Okita, K., Takahashi, N., Sawaguchi, A.,

Yamanaka, S., Nakauchi, H., Nishimura, S., Eto, K., 2014. Expandable

Megakaryocyte Cell Lines Enable Clinically Applicable Generation of Platelets from

Human Induced Pluripotent Stem Cells. Cell Stem Cell 1–14. https://doi.org/

10.1016/j.stem.2014.01.011.

Nakashima, Y., Omasa, T., 2016. What Kind of Signaling Maintains Pluripotency and

Viability in Human-Induced Pluripotent Stem Cells Cultured on Laminin-511 with

Serum-Free Medium? Biores. Open Access 5 (1), 84–93. https://doi.org/10.1089/

biores.2016.0001.

Nazor, K.L., Altun, G., Lynch, C., Tran, H., Harness, J.V., Slavin, I., Garitaonandia, I.,

Müller, F.J., Wang, Y.C., Boscolo, F.S., Fakunle, E., Dumevska, B., Lee, S., Park, H.S.,

Olee, T., D’Lima, D.D., Semechkin, R., Parast, M.M., Galat, V., Laslett, A.L.,

Schmidt, U., Keirstead, H.S., Loring, J.F., Laurent, L.C., 2012. Recurrent variations in

DNA methylation in human pluripotent stem cells and their differentiated

derivatives. Cell Stem Cell 10, 620–634. https://doi.org/10.1016/j.

stem.2012.02.013.

Nerlov, C., Graf, T., 1998. PU . 1 induces myeloid lineage commitment in multipotent

hematopoietic progenitors. Genes Dev. 12, 15. 2403–2412.

Ng, E.S., Azzola, L., Bruveris, F.F., Calvanese, V., Phipson, B., Vlahos, K., Hirst, C.,

Jokubaitis, V.J., Yu, Q.C., Maksimovic, J., Liebscher, S., Januar, V., Zhang, Z.,

Williams, B., Conscience, A., Durnall, J., Jackson, S., Costa, M., Elliott, D.,

Haylock, D.N., Nilsson, S.K., Saffery, R., Schenke-Layland, K., Oshlack, A.,

Mikkola, H.K.A., Stanley, E.G., Elefanty, A.G., 2016. Differentiation of human

embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aortagonad-mesonephros. Nat. Biotechnol. 34, 1168–1179. https://doi.org/10.1038/

nbt.3702.

Nishimura, T., Kaneko, S., Kawana-tachikawa, A., Tajima, Y., Goto, H., Zhu, D.,

Nakayama-hosoya, K., Iriguchi, S., Uemura, Y., Shimizu, T., Takayama, N.,

Yamada, D., Nishimura, K., Ohtaka, M., Watanabe, N., Takahashi, S., Iwamoto, A.,

Koseki, H., Nakanishi, M., Eto, K., Nakauchi, H., 2013. Generation of Rejuvenated

Antigen-Specific T Cells by Reprogramming to Pluripotency and Redifferentiation.

Cell Stem Cell 12, 114–126. https://doi.org/10.1016/j.stem.2012.11.002.

Nishiuchi, R., Takagi, J., Hayashi, M., Ido, H., Yagi, Y., Sanzen, N., Tsuji, T., Yamada, M.,

Sekiguchi, K., 2006. Ligand-binding specificities of laminin-binding integrins: A

comprehensive survey of laminin-integrin interactions using recombinant α3β1,

α6β1, α7β1 and α6β4 integrins. Matrix Biol. 25, 189–197. https://doi.org/10.1016/j.

matbio.2005.12.001.

Nishizawa, M., Chonabayashi, K., Nomura, M., Tanaka, A., Nakamura, M., Inagaki, A.,

Nishikawa, M., Takei, I., Oishi, A., Tanabe, K., Ohnuki, M., Yokota, H., KoyanagiAoi, M., Okita, K., Watanabe, A., Takaori-Kondo, A., Yamanaka, S., Yoshida, Y.,

2016. Epigenetic Variation between Human Induced Pluripotent Stem Cell Lines Is

an Indicator of Differentiation Capacity. Cell Stem Cell 19, 341–354. https://doi.

org/10.1016/j.stem.2016.06.019.

Okita, K., Yamakawa, T., Matsumura, Y., Sato, Y., Amano, N., Watanabe, A.,

Goshima, N., Yamanaka, S., 2013. An efficient nonviral method to generate

integration-free human-induced pluripotent stem cells from cord blood and

peripheral blood cells. Stem Cells 31, 458–466. https://doi.org/10.1002/stem.1293.

Oloumi, A., Syam, S., Dedhar, S., 2006. Modulation of Wnt3a-mediated nuclear β-catenin

accumulation and activation by integrin-linked kinase in mammalian cells.

Oncogene 25, 7747–7757. https://doi.org/10.1038/sj.onc.1209752.

Patton, B.L., Cunningham, J.M., Thyboll, J., Kortesmaa, J., Westerblad, H., Edstr¨

om, L.,

Tryggvason, K., Sanes, J.R., 2001. Properly formed but improperly localized synaptic

specializations in the absence of laminin α4. Nat. Neurosci. 4, 597–604. https://doi.

org/10.1038/88414.

Piva, M.B.R., Jakubzig, B., Bendas, G., 2017. Integrin activation contributes to lower

cisplatin sensitivity in MV3 melanoma cells by inducing the Wnt signalling pathway.

Cancers (Basel). 9, 125. https://doi.org/10.3390/cancers9090125.

Polo, J.M., Liu, S., Figueroa, M.E., Kulalert, W., Eminli, S., Tan, K.Y., Apostolou, E.,

Stadtfeld, M., Li, Y., Shioda, T., Natesan, S., Wagers, A.J., Melnick, A., Evans, T.,

Hochedlinger, K., 2010. Cell type of origin influences the molecular and functional

properties of mouse induced pluripotent stem cells. Nat. Biotechnol. 28, 848–855.

https://doi.org/10.1038/nbt.1667.

Qu´

elo, I., Gauthier, C., Hannigan, G.E., Dedhar, S., St-Arnaud, R., 2004. Integrin-linked

kinase regulates the nuclear entry of the c-Jun coactivator α-NAC and its

coactivation potency. J. Biol. Chem. 279, 43893–43899. https://doi.org/10.1074/

jbc.M406310200.

Ramírez-Bergeron, D.L., Runge, A., Cowden Dahl, K.D., Fehling, H.J., Keller, G.,

Simon, M.C., 2004. Hypoxia affects mesoderm and enhances hemangioblast

specification during early development. Development 131, 4623–4634. https://doi.

org/10.1242/dev.01310.

Sano, S., Eto, K., Takayama N., Nakauchi, H., Culture method related to differentiation of

pluripotent stem cells into blood cells. Patent.PCT/JP2011/070563.

Sasaki, K., Yokobayashi, S., Nakamura, T., Okamoto, I., Yabuta, Y., Kurimoto, K.,

Ohta, H., Moritoki, Y., Iwatani, C., Tsuchiya, H., Nakamura, S., Sekiguchi, K.,

Sakuma, T., Yamamoto, Takashi, Mori, T., Woltjen, K., Nakagawa, M.,

Yamamoto, Takuya, Takahashi, K., Yamanaka, S., Saitou, M., 2015. Robust In Vitro

Induction of Human Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell 17,

178–194. https://doi.org/10.1016/j.stem.2015.06.014.

Sasaki, T., Takagi, J., Giudici, C., Yamada, Y., Arikawa-Hirasawa, E., Deutzmann, R.,

Timpl, R., Sonnenberg, A., B¨

achinger, H.P., Tonge, D., 2010. Laminin-121Recombinant expression and interactions with integrins. Matrix Biol. 29, 484–493.

https://doi.org/10.1016/j.matbio.2010.05.004.

Shibata, S., Hayashi, R., Okubo, T., Kudo, Y., Katayama, T., Ishikawa, Y., Toga, J.,

Yagi, E., Honma, Y., Quantock, A.J., Sekiguchi, K., Nishida, K., 2018. Selective

Laminin-Directed Differentiation of Human Induced Pluripotent Stem Cells into

Distinct Ocular Lineages. Cell Rep. 25, 1668–1679.e5. https://doi.org/10.1016/j.

celrep.2018.10.032.

Spivak-Kroizman, T., Lemmon, M.A., Dikic, I., Ladbury, J.E., Pinchasi, D., Huang, J.,

Jaye, M., Crumley, G., Schlessinger, J., Lax, I., 1994. Heparin-induced

oligomerization of FGF molecules is responsible for FGF receptor dimerization,

activation, and cell proliferation. Cell 79, 1015–1024. https://doi.org/10.1016/

0092-8674(94)90032-9.

Sturgeon, C.M., Ditadi, A., Awong, G., Kennedy, M., Keller, G., 2014. Wnt signaling

controls the specification of definitive and primitive hematopoiesis from human

pluripotent stem cells. Nat. Biotechnol. 32, 554–561. https://doi.org/10.1038/

nbt.2915.

Sturgeon, C.M., Ditadi, A., Clarke, R.L., Keller, G., 2013. Defining the path to

hematopoietic stem cells. Nat. Biotechnol. 31, 416–418. https://doi.org/10.1038/

nbt.2571.

Susek, K.H., Korpos, E., Huppert, J., Wu, C., Savelyeva, I., Rosenbauer, F., MüllerTidow, C., Koschmieder, S., Sorokin, L., 2018. Bone marrow laminins influence

hematopoietic stem and progenitor cell cycling and homing to the bone marrow.

Matrix Biol. 67, 47–62. https://doi.org/10.1016/j.matbio.2018.01.007.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K.,

Yamanaka, S., 2007. Induction of pluripotent stem cells from adult human

fibroblasts by defined factors. Cell 131, 861–872. https://doi.org/10.1016/j.

cell.2007.11.019.

Takayama, N., Nishikii, H., Usui, J., Tsukui, H., Sawaguchi, A., Hiroyama, T., Eto, K.,

Nakauchi, H., 2008. Generation of functional platelets from human embryonic stem

cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic

progenitors. Blood 111, 5298–5306. https://doi.org/10.1182/blood-2007-10117622.

Takebe, T., Sekine, K., Kimura, M., Yoshizawa, E., Ayano, S., Koido, M., Funayama, S.,

Nakanishi, N., Hisai, T., Kobayashi, T., Kasai, T., Kitada, R., Mori, A., Ayabe, H.,

Ejiri, Y., Amimoto, N., Yamazaki, Y., Ogawa, S., Ishikawa, M., Kiyota, Y., Sato, Y.,

Nozawa, K., Okamoto, S., Ueno, Y., Taniguchi, H., 2017. Massive and Reproducible

Production of Liver Buds Entirely from Human Pluripotent Stem Cells. Cell Rep. 21,

2661–2670. https://doi.org/10.1016/j.celrep.2017.11.005.

Takei, H., Edahiro, Y., Mano, S., Masubuchi, N., Mizukami, Y., Imai, M., Morishita, S.,

Misawa, K., Ochiai, T., Tsuneda, S., Endo, H., Nakamura, S., Eto, K., Ohsaka, A.,

Araki, M., Komatsu, N., 2018. Skewed megakaryopoiesis in human induced

pluripotent stem cell-derived haematopoietic progenitor cells harbouring

calreticulin mutations. Br. J. Haematol. 181, 791–802. https://doi.org/10.1111/

bjh.15266.

Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J.,

Marshall, V.S., Jones, J.M., 1998. Embryonic Stem Cell Lines Derived from Human

Blastocysts. Science (80-. ). 282, 1145–1147. https://doi.org/10.1126/

science.282.5391.1145.

Troussard, A.A., Tan, C., Yoganathan, T.N., Dedhar, S., 1999. Cell-extracellular matrix

interactions stimulate the AP-1 transcription factor in an integrin-linked kinase- and

glycogen synthase kinase 3-dependent manner. Mol. Cell. Biol. 19, 7420–7427.

Umekage, M., Sato, Y., Takasu, N., 2019. Overview : an iPS cell stock at CiRA. Inflamm.

Regen. 39, 1–5.

Vinjamur, D.S., Bauer, D.E., Orkin, S.H., 2018. Recent progress in understanding and

manipulating haemoglobin switching for the haemoglobinopathies. Br. J. Haematol.

180, 630–643. https://doi.org/10.1111/bjh.15038.

Virtanen, I., Gullberg, D., Rissanen, J., Kivilaakso, E., Kiviluoto, T., Laitinen, L.A.,

Lehto, V.P., Ekblom, P., 2000. Laminin α1-chain shows a restricted distribution in

epithelial basement membranes of fetal and adult human tissues. Exp. Cell Res. 257,

298–309. https://doi.org/10.1006/excr.2000.4883.

Wang, C., Tang, X., Sun, X., Miao, Z., Lv, Y., Yang, Y., Zhang, H., Zhang, P., Liu, Y.,

Du, L., Gao, Y., Yin, M., Ding, M., Deng, H., 2012. TGFβ inhibition enhances the

generation of hematopoietic progenitors from human ES cell-derived hemogenic

endothelial cells using a stepwise strategy. Cell Res. 22, 194–207. https://doi.org/

10.1038/cr.2011.138.

13

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

A. Yuzuriha et al.

Stem Cell Research 53 (2021) 102287

White, M.D., Zenker, J., Bissiere, S., Plachta, N., 2017. How cells change shape and

position in the early mammalian embryo. Curr. Opin. Cell Biol. 44, 7–13. https://

doi.org/10.1016/j.ceb.2016.11.002.

Yap, L., Tay, H.G., Nguyen, M.T.X., Tjin, M.S., Tryggvason, K., 2019. Laminins in Cellular

Differentiation. Trends Cell Biol. 29, 987–1000. https://doi.org/10.1016/j.

tcb.2019.10.001.

Zhang, T., Huang, K., Zhu, Y., Wang, T., Shan, Y., Long, B., Li, Y., Chen, Q., Wang, P.,

Zhao, S., Li, D., Wu, C., Kang, B., Gu, J., Mai, Y., Wang, Q., Li, J., Zhang, Y., Liang, Z.,

Guo, L., Wu, F., Su, S., Wang, J., Gao, M., Zhong, X., Liao, B., Chen, J., Zhang, X.,

Shu, X., Pei, D., Nie, J., Pan, G., 2019. Vitamin C– dependent lysine demethylase 6

(KDM6)mediated demethylation promotes a chromatin state that supports the

endothelial-to-hematopoietic transition. J. Biol. Chem. 294, 13657–13670. https://

doi.org/10.1074/jbc.RA119.009757.

14

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る