リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Draft Genome Sequence of Aduncisulcus paluster, a Free-Living Microaerophilic Eukaryote Belonging to the Fornicata」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Draft Genome Sequence of Aduncisulcus paluster, a Free-Living Microaerophilic Eukaryote Belonging to the Fornicata

Yuyama, Ikuko 久米, 慶太郎 Tamura, Takumi 稲垣, 祐司 橋本, 哲男 筑波大学 DOI:36695596

2023.03.22

概要

GENOME SEQUENCES

Draft Genome Sequence of Aduncisulcus paluster, a Free-Living
Microaerophilic Eukaryote Belonging to the Fornicata
Ikuko Yuyama,a

Keitaro Kume,b Takumi Tamura,c Yuji Inagaki,c,d Tetsuo Hashimotoc,e

Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan

a

Faculty of Medicine, University of Tsukuba, Ibaraki, Japan

b
c

Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan

d

Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan

e

Ikuko Yuyama and Keitaro Kume contributed equally to this work. Author order was determined in order of seniority.

ABSTRACT Aduncisulcus paluster is a free-living, unicellular flagellate belonging to the
eukaryotic lineage Fornicata, which includes free-living and commensal/parasitic organisms.
Here, we report the draft genome sequence of A. paluster, which provides clues for
elucidating the adaptation to microaerophilic/anaerobic environments and the transition
between free-living and commensal/parasitic lifestyles in Fornicata.

he Fornicata include various microaerophiles/anaerobes, which possess mitochondrionrelated organelles. Aduncisulcus paluster (1) is a free-living fornicate that shares a common
ancestor with the parasites (2). Previously, only transcriptome data were available for A. paluster,
which contain many sequences derived from bacteria in the culture medium (2). Therefore,
to obtain more accurate genetic information, we performed genome/transcriptome analyses
on A. paluster cells purified by density gradient centrifugation (3). This is the third genomic
analysis of free-living fornicates (3, 4).
We have maintained the laboratory culture of A. paluster NY0171, which is identical to
the strain NIES-1843 (1). The culture containing its food bacteria was kept at 17.5°C in a
modified TYGM-9 medium (10%) prepared with filtered seawater. We inoculated from a single A. paluster culture to fresh medium in three flasks (1,650 mL in total) and cultured the
cells for 1 week. The cells in two out of the three flasks were combined and used for RNA
extraction, and the cells in the other flask were applied to DNA extraction. The cells were
collected by density gradient centrifugation using the 0, 10, and 20% Optiprep (Sigma) gradient at 17°C, 800  g, for 20 min (3). The purified cells at 3.4  107 and 1.56  106 were
used for RNA and DNA extractions, respectively. DNA was extracted using the SDS plus phenol-chloroform-isoamyl alcohol (25:24:1) method (5), while RNA was extracted using TRIzol
reagent (Sigma) according to the manufacturer’s instructions. We constructed the libraries
for transcriptome sequencing (RNA-seq) and genome sequencing (Genome-seq) analyses
using the Kapa stranded mRNA-seq kit for RNA and the Kapa HyperPrep kit (Kapa
Biosystem) for DNA, respectively. Prior to the library construction, the DNA sample was
sheared into 500 bp by an ultrasonicator (Covaris). Then, Genome-seq and RNA-seq analyses (150-bp paired-end) were performed on HiSeqX and NextSeq500 (Illumina) at a biotech
company (SeibutsuGiken Inc.).
We obtained 463,267,674 reads/69.9 Gbp (Genome-seq) and 223,709,682 reads/31.8
Gbp (RNA-seq). We used the default parameters for subsequent analyses unless otherwise
specified. Reads were preprocessed using Fastp v0.21.0 with a .Q30 threshold (6),
followed by de novo assembly performed in MaSuRCA v3.3.3 (Genome-seq) (7) and
Trinity v2.12 (RNA-seq) (8). For gene prediction, we executed Braker2 v2.1.6 (9–15) with
the supporting information generated by aligning the cleaned RNA-seq reads to the
February 2023 Volume 12 Issue 2

Editor Jason E. Stajich, University of California,
Riverside
Copyright © 2023 Yuyama et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.
Address correspondence to Keitaro Kume,
keitaro_kume@md.tsukuba.ac.jp.
The authors declare no conflict of interest.
Received 3 June 2022
Accepted 5 January 2023
Published 25 January 2023

10.1128/mra.00539-22

1

Downloaded from https://journals.asm.org/journal/mra on 15 March 2023 by 133.51.140.22.

T

Announcement

Microbiology Resource Announcements

TABLE 1 Overview of nuclear genome sequences for fornicates
Description
Aduncisulcus paluster
Carpediemonas membranifera
Kipferlia bialata
Spironucleus salmonicida
Giardia intestinalis

Genome
size (Mb)
29.4
24.2
51.0
12.9
12.8

No. of
contigs
25,863
69
11,563
233
211

N50
(kbp)
4.6
905.8
10.5
150.8
2,762.4

GC
(%)
39.1
57.1
49.4
33.5
49.2

No. of predicted
proteins
15,316
8,300
17,389
8,067
5,901

Mean amino
acid (aa) length
418.5
467.2
333.0
373.0
530.0

No. of
introns
11,743
124,912
3
8

Reference(s)
This study
4; this study
3
3, 4
3, 4

MaSuRCA assembly by TopHat v2.1.1 (16) (option: -g 1), and we used TransDecoder v5.5.0
(https://github.com/TransDecoder/TransDecoder) for the Trinity assembly. Based on the
BLASTN/BLASTP (17, 18) searches using the assembled/predicted sequences against the
NCBI nt/nr databases (ver. Dec-21-2021/Feb-04-2022), we removed the putative contaminated sequences that matched to the top hit database sequences from outside the phylum, Metamonada, that includes the Fornicata, with an E value of ,1e210 and pident
(percentage of identical matches) of .0.95. Then, we assessed genome completeness of
the predicted sequences by BUSCO v5.1.2 with the eukaryote ODB10 data set (19), and it
was 40.4% (complete, 30.2%; fragment, 10.2%). We finally summarized the statistics in
Table 1. Both predicted protein sequences were annotated by InterProScan v5.52 (20, 21)
and by BLASTP search against nr (if pident was .0.9 and qcov (query coverage) was .0.9,
the best-hit annotation was used).
This draft genome will help in the study of the genome evolution associated with the evolutionary transition between free-living and commensal/parasitic lifestyles in the Fornicata.
Data availability. The genome/transcriptome sequences are available at DDBJ/
ENA/GenBank (sra-run DRR351251/DRR353576) under accession no. BQXS01000001
to BQXS01023235/ICSK01000001 to ICSK01036959.

REFERENCES
1. Yubuki N, Huang SSC, Leander BS. 2016. Comparative ultrastructure of fornicate excavates, including a novel free-living relative of Diplomonads: Aduncisulcus paluster gen. et sp. nov. Protist 167:584–596. https://doi.org/10.1016/
j.protis.2016.10.001.
 cka I, Silberman JD,
2. Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Cepi
Andersson JO, Xu F, Yabuki A, Eme L, Zhang Q, Takishita K, Inagaki Y, Simpson
AGB, Hashimoto T, Roger AJ. 2017. Organelles that illuminate the origins of
Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol 1:0092.
https://doi.org/10.1038/s41559-017-0092.
3. Tanifuji G, Takabayashi S, Kume K, Takagi M, Nakayama T, Kamikawa R,
Inagaki Y, Hashimoto T. 2018. The draft genome of Kipferlia bialata reveals
reductive genome evolution in fornicate parasites. PLoS One 13:e0194487.
https://doi.org/10.1371/journal.pone.0194487.
4. Salas-Leiva DE, Tromer EC, Curtis BA, Jerlström-Hultqvist J, Kolisko M, Yi Z,
Salas-Leiva JS, Gallot-Lavallée L, Williams SK, Kops GJPL, Archibald JM,
Simpson AGB, Roger AJ. 2021. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat
Commun 12:6003. https://doi.org/10.1038/s41467-021-26077-2.
5. Green MR, Sambrook J. 2012. Molecular cloning: a laboratory manual, 4th
ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
6. Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/
bty560.
7. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. 2013. The
MaSuRCA genome assembler. Bioinformatics 29:2669–2677. https://doi
.org/10.1093/bioinformatics/btt476.
February 2023 Volume 12 Issue 2

8. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X,
Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A,
Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N,
Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a
reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883.
9. Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. 2021. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP1 and AUGUSTUS
supported by a protein database. NAR Genom Bioinform 3:lqaa108. https://doi
.org/10.1093/nargab/lqaa108.
10. Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. 2019. Whole-genome
annotation with BRAKER. Methods Mol Biol 1962:65–95. https://doi.org/
10.1007/978-1-4939-9173-0_5.
11. Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. 2016. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS.
Bioinformatics 32:767–769. https://doi.org/10.1093/bioinformatics/btv661.
12. Stanke M, Diekhans M, Baertsch R, Haussler D. 2008. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24:637–644. https://doi.org/10.1093/bioinformatics/btn013.
13. Stanke M, Schöffmann O, Morgenstern B, Waack S. 2006. Gene prediction
in eukaryotes with a generalized hidden Markov model that uses hints
from external sources. BMC Bioinformatics 7:62. https://doi.org/10.1186/1471
-2105-7-62.
14. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis
G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The
sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079.
https://doi.org/10.1093/bioinformatics/btp352.
10.1128/mra.00539-22

2

Downloaded from https://journals.asm.org/journal/mra on 15 March 2023 by 133.51.140.22.

ACKNOWLEDGMENTS
Computations were partially performed on the NIG supercomputer at ROIS National
Institute of Genetics.
This work was supported in part by grants from the Japan Society for the Promotion
of Science (19KK0185 and 22K06368 awarded to T.H.) and by the “Tree of Life” research
project of the University of Tsukuba.

15. Barnett DW, Garrison EK, Quinlan AR, Strömberg MP, Marth GT. 2011. BamTools:
a C11 API and toolkit for analyzing and managing BAM files. Bioinformatics
27:1691–1692. https://doi.org/10.1093/bioinformatics/btr174.
16. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013. TopHat2:
accurate alignment of transcriptomes in the presence of insertions, deletions
and gene fusions. Genome Biol 14:R36. https://doi.org/10.1186/gb-2013
-14-4-r36.
17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local
alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022
-2836(05)80360-2.
18. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
Madden TL. 2009. BLAST1: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421.
19. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO
update: novel and streamlined workflows along with broader and deeper

February 2023 Volume 12 Issue 2

Microbiology Resource Announcements

phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes.
Mol Biol Evol 38:4647–4654. https://doi.org/10.1093/molbev/msab199.
20. Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S, Mitchell A,
Nuka G, Paysan-Lafosse T, Qureshi M, Raj S, Richardson L, Salazar GA,
Williams L, Bork P, Bridge A, Gough J, Haft DH, Letunic I, Marchler-Bauer
A, Mi H, Natale DA, Necci M, Orengo CA, Pandurangan AP, Rivoire C,
Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH,
Bateman A, Finn RD. 2021. The InterPro protein families and domains
database: 20 years on. Nucleic Acids Res 49:D344–D354. https://doi.org/10
.1093/nar/gkaa977.
21. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H,
Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A,
Scheremetjew M, Yong S-Y, Lopez R, Hunter S. 2014. InterProScan 5: genomescale protein function classification. Bioinformatics 30:1236–1240. https://doi
.org/10.1093/bioinformatics/btu031.

10.1128/mra.00539-22

3

Downloaded from https://journals.asm.org/journal/mra on 15 March 2023 by 133.51.140.22.

Announcement

この論文で使われている画像

関連論文

参考文献

1. Yubuki N, Huang SSC, Leander BS. 2016. Comparative ultrastructure of fornicate excavates, including a novel free-living relative of Diplomonads: Aduncisulcus paluster gen. et sp. nov. Protist 167:584–596. https://doi.org/10.1016/

j.protis.2016.10.001.

 cka I, Silberman JD,

2. Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Cepi

Andersson JO, Xu F, Yabuki A, Eme L, Zhang Q, Takishita K, Inagaki Y, Simpson

AGB, Hashimoto T, Roger AJ. 2017. Organelles that illuminate the origins of

Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol 1:0092.

https://doi.org/10.1038/s41559-017-0092.

3. Tanifuji G, Takabayashi S, Kume K, Takagi M, Nakayama T, Kamikawa R,

Inagaki Y, Hashimoto T. 2018. The draft genome of Kipferlia bialata reveals

reductive genome evolution in fornicate parasites. PLoS One 13:e0194487.

https://doi.org/10.1371/journal.pone.0194487.

4. Salas-Leiva DE, Tromer EC, Curtis BA, Jerlström-Hultqvist J, Kolisko M, Yi Z,

Salas-Leiva JS, Gallot-Lavallée L, Williams SK, Kops GJPL, Archibald JM,

Simpson AGB, Roger AJ. 2021. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat

Commun 12:6003. https://doi.org/10.1038/s41467-021-26077-2.

5. Green MR, Sambrook J. 2012. Molecular cloning: a laboratory manual, 4th

ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

6. Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/

bty560.

7. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. 2013. The

MaSuRCA genome assembler. Bioinformatics 29:2669–2677. https://doi

.org/10.1093/bioinformatics/btt476.

February 2023 Volume 12 Issue 2

8. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X,

Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A,

Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N,

Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a

reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883.

9. Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. 2021. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP1 and AUGUSTUS

supported by a protein database. NAR Genom Bioinform 3:lqaa108. https://doi

.org/10.1093/nargab/lqaa108.

10. Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. 2019. Whole-genome

annotation with BRAKER. Methods Mol Biol 1962:65–95. https://doi.org/

10.1007/978-1-4939-9173-0_5.

11. Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. 2016. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS.

Bioinformatics 32:767–769. https://doi.org/10.1093/bioinformatics/btv661.

12. Stanke M, Diekhans M, Baertsch R, Haussler D. 2008. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24:637–644. https://doi.org/10.1093/bioinformatics/btn013.

13. Stanke M, Schöffmann O, Morgenstern B, Waack S. 2006. Gene prediction

in eukaryotes with a generalized hidden Markov model that uses hints

from external sources. BMC Bioinformatics 7:62. https://doi.org/10.1186/1471

-2105-7-62.

14. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis

G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The

sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079.

https://doi.org/10.1093/bioinformatics/btp352.

10.1128/mra.00539-22

Downloaded from https://journals.asm.org/journal/mra on 15 March 2023 by 133.51.140.22.

ACKNOWLEDGMENTS

Computations were partially performed on the NIG supercomputer at ROIS National

Institute of Genetics.

This work was supported in part by grants from the Japan Society for the Promotion

of Science (19KK0185 and 22K06368 awarded to T.H.) and by the “Tree of Life” research

project of the University of Tsukuba.

15. Barnett DW, Garrison EK, Quinlan AR, Strömberg MP, Marth GT. 2011. BamTools:

a C11 API and toolkit for analyzing and managing BAM files. Bioinformatics

27:1691–1692. https://doi.org/10.1093/bioinformatics/btr174.

16. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013. TopHat2:

accurate alignment of transcriptomes in the presence of insertions, deletions

and gene fusions. Genome Biol 14:R36. https://doi.org/10.1186/gb-2013

-14-4-r36.

17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local

alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022

-2836(05)80360-2.

18. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,

Madden TL. 2009. BLAST1: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421.

19. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO

update: novel and streamlined workflows along with broader and deeper

February 2023 Volume 12 Issue 2

Microbiology Resource Announcements

phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes.

Mol Biol Evol 38:4647–4654. https://doi.org/10.1093/molbev/msab199.

20. Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S, Mitchell A,

Nuka G, Paysan-Lafosse T, Qureshi M, Raj S, Richardson L, Salazar GA,

Williams L, Bork P, Bridge A, Gough J, Haft DH, Letunic I, Marchler-Bauer

A, Mi H, Natale DA, Necci M, Orengo CA, Pandurangan AP, Rivoire C,

Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH,

Bateman A, Finn RD. 2021. The InterPro protein families and domains

database: 20 years on. Nucleic Acids Res 49:D344–D354. https://doi.org/10

.1093/nar/gkaa977.

21. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H,

Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A,

Scheremetjew M, Yong S-Y, Lopez R, Hunter S. 2014. InterProScan 5: genomescale protein function classification. Bioinformatics 30:1236–1240. https://doi

.org/10.1093/bioinformatics/btu031.

10.1128/mra.00539-22

Downloaded from https://journals.asm.org/journal/mra on 15 March 2023 by 133.51.140.22.

Announcement

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る