リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ILF2 enhances the DNA cytosine deaminase activity of tumor mutator APOBEC3B in multiple myeloma cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ILF2 enhances the DNA cytosine deaminase activity of tumor mutator APOBEC3B in multiple myeloma cells

Kazuma, Yasuhiro 京都大学 DOI:10.14989/doctor.k24187

2022.09.26

概要

APOBEC3(apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like)ファミリー分子APOBEC3B(A3B)は、シトシン脱アミノ化(CDA)活性を有し、様々な癌腫で過剰発現してAPOBECに特徴的なパターンの変異を腫瘍細胞のゲノムにもたらす。A3Bの制御機構には、転写調節や選択的スプライシング、リン酸化などの報告があるが、A3Bとの蛋白間相互作用によるCDA活性の調節に関しては明らかでない。他のAPOBECファミリー分子であるAIDは、共に高分子量複合体を構成しているhnRNP蛋白によりその機能が調節される。同様にA3Bも核内で高分子量複合体を形成していることから、その構成蛋白がCDA活性を制御している可能性を検証するため、A3B相互作用蛋白の解析を計画した。

本研究ではまず骨髄腫細胞株AMO1、RPMI8226を用いてA3Bの共免疫沈降サンプルについて質量分析を行い、hnRNP、スプライシング因子、リボソーム蛋白、RNAヘリカーゼなど30種類の相互作用蛋白の候補を同定した。

共免疫沈降サンプルのウエスタンブロッティングにより、これら候補蛋白との結合を確認できたが、SAFB以外の蛋白はRNase処理によりA3Bとの結合が失われた。次に密度勾配遠心分離法を用いて、骨髄腫細胞の細胞溶解液を高分子量分画と低分子量分画に分離し、各相互作用蛋白の分布を確認した。A3Bと同様にSAFB、SRSF7、Matrin-3はRNase処理の有無に関わらず高分子量分画に認められたが、ILF2、DHX9、RBMXはRNase処理により高分子量分画から低分子量分画に分布が移動した。以上よりSAFBを除く多くの相互作用蛋白はRNAを介してA3Bと高分子量複合体を構成していると考えられた。

この中で、A3BとRNAを介さず直接結合するSAFB、および1q21増幅を有する骨髄腫の薬剤抵抗性や予後との関連が既に知られているILF2に着目して検討を進めた。まず、蛍光免疫染色を行い、共にA3Bと核内で共局在することを確認した。さらに、蛍光標識したオリゴヌクレオチドを用いたinvitro CD Aassayを用いて、これらの蛋白がA3BのCDA活性に与える影響を評価した。精製したILF2蛋白の混合により、ILF2濃度依存性にA3BのCDA活性が増強した。また、ILF2過剰発現させた細胞溶解液のCDA活性は過剰発現していない場合に比較し36%増強し、RNAiによりILF2をノックダウンした細胞溶解液では、していない場合に比較し30%低下した。一方でSAFBはいずれの系でもCDA活性に影響を与えなかった。

以上より、A3Bの高分子量複合体を構成する蛋白の一つであるILF2がCDA活性を調節している可能性が示された。ILF2はRNA依存性にA3Bと結合する一方で、DNA結合ドメインも有することからCDAの基質となる一本鎖DNAを隣接するA3Bに提供している可能性が考えられる。内因性蛋白がA3BのCDA活性を変化させる報告はこれまでになく、今回の研究の成果はA3BによるゲノムDNAへの変異の制御機構を理解する上で重要な知見と考えられる。

この論文で使われている画像

参考文献

1. Burns, M. B. et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494, 366–370. https://doi.org/10.1038/ nature11881 (2013).

2. Walker, B. A. et al. Identifcation of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood 132, 587–597. https://doi.org/10.1182/blood-2018-03-840132 (2018).

3. Maura, F. et al. Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines. Leukemia 32, 1044–1048. https://doi.org/10.1038/leu.2017.345 (2018).

4. Bolli, N. et al. Genomic patterns of progression in smoldering multiple myeloma. Nat. Commun. 9, 3363. https://doi.org/10.1038/ s41467-018-05058-y (2018).

5. Walker, B. A. et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat. Commun.

6, 6997. https://doi.org/10.1038/ncomms7997 (2015). 6. Lackey, L. et al. APOBEC3B and AID have similar nuclear import mechanisms. J. Mol. Biol. 419, 301–314. https://doi.org/10. 1016/j.jmb.2012.03.011 (2012).

7. Yamazaki, H. et al. Endogenous APOBEC3B overexpression constitutively generates DNA substitutions and deletions in myeloma cells. Sci. Rep. 9, 7122. https://doi.org/10.1038/s41598-019-43575-y (2019).

8. Roelofs, P. A. et al. Characterization of the mechanism by which the RB/E2F pathway controls expression of the cancer genomic DNA deaminase APOBEC3B. Elife https://doi.org/10.7554/eLife.61287 (2020).

9. Maruyama, W. et al. Classical NF-kappaB pathway is responsible for APOBEC3B expression in cancer cells. Biochem. Biophys. Res. Commun. 478, 1466–1471. https://doi.org/10.1016/j.bbrc.2016.08.148 (2016).

10. Leonard, B. et al. Te PKC/NF-kappaB signaling pathway induces APOBEC3B expression in multiple human cancers. Can. Res. 75, 4538–4547. https://doi.org/10.1158/0008-5472.CAN-15-2171-T (2015).

11. Chou, W. C. et al. B-Myb induces APOBEC3B expression leading to somatic mutation in multiple cancers. Sci. Rep. 7, 44089. https://doi.org/10.1038/srep44089 (2017).

12. Matsumoto, T. et al. Protein kinase A inhibits tumor mutator APOBEC3B through phosphorylation. Sci. Rep. 9, 8307. https://doi. org/10.1038/s41598-019-44407-9 (2019).

13. Rouf Banday, A. et al. Targeting natural splicing plasticity of APOBEC3B restricts its expression and mutagenic activity. Commun. Biol. 4, 386. https://doi.org/10.1038/s42003-021-01844-5 (2021).

14. Periyasamy, M. et al. APOBEC3B-mediated cytidine deamination is required for estrogen receptor action in breast cancer. Cell Rep. 13, 108–121. https://doi.org/10.1016/j.celrep.2015.08.066 (2015).

15. Chen, Y. et al. DHX9 interacts with APOBEC3B and attenuates the anti-HBV efect of APOBEC3B. Emerg. Microbes Infect. 9, 366–377. https://doi.org/10.1080/22221751.2020.1725398 (2020).

16. Cheng, A. Z. et al. Epstein-Barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity. Nat. Microbiol. 4, 78–88. https://doi.org/10.1038/s41564-018-0284-6 (2019).

17. Wang, D. et al. APOBEC3B interaction with PRC2 modulates microenvironment to promote HCC progression. Gut https://doi. org/10.1136/gutjnl-2018-317601 (2019).

18. Cortez, L. M. et al. APOBEC3A is a prominent cytidine deaminase in breast cancer. PLoS Genet. 15, e1008545. https://doi.org/10. 1371/journal.pgen.1008545 (2019).

19. Iwatani, Y., Takeuchi, H., Strebel, K. & Levin, J. G. Biochemical activities of highly purifed, catalytically active human APOBEC3G: correlation with antiviral efect. J. Virol. 80, 5992–6002. https://doi.org/10.1128/JVI.02680-05 (2006).

20. McDougall, W. M. & Smith, H. C. Direct evidence that RNA inhibits APOBEC3G ssDNA cytidine deaminase activity. Biochem. Biophys. Res. Commun. 412, 612–617. https://doi.org/10.1016/j.bbrc.2011.08.009 (2011).

21. Soros, V. B., Yonemoto, W. & Greene, W. C. Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and subsequently activated by RNase H. PLoS Pathog. 3, e15. https://doi.org/10.1371/journal.ppat.0030015 (2007).

22. McDougall, W. M., Okany, C. & Smith, H. C. Deaminase activity on single-stranded DNA (ssDNA) occurs in vitro when APOBEC3G cytidine deaminase forms homotetramers and higher-order complexes. J. Biol. Chem. 286, 30655–30661. https:// doi.org/10.1074/jbc.M111.269506 (2011).

23. Xiao, X. et al. Structural determinants of APOBEC3B non-catalytic domain for molecular assembly and catalytic regulation. Nucleic Acids Res. 45, 7494–7506. https://doi.org/10.1093/nar/gkx362 (2017).

24. Mishra, N., Reddy, K. S., Timilsina, U., Gaur, D. & Gaur, R. Human APOBEC3B interacts with the heterogenous nuclear ribonucleoprotein A3 in cancer cells. J. Cell. Biochem. 119, 6695–6703. https://doi.org/10.1002/jcb.26855 (2018).

25. Zhang, W. et al. Cytidine deaminase APOBEC3B interacts with heterogeneous nuclear ribonucleoprotein K and suppresses hepatitis B virus expression. Cell. Microbiol. 10, 112–121. https://doi.org/10.1111/j.1462-5822.2007.01020.x (2008).

26. Yamazaki, H. et al. APOBEC3B reporter myeloma cell lines identify DNA damage response pathways leading to APOBEC3B expression. PLoS ONE 15, e0223463. https://doi.org/10.1371/journal.pone.0223463 (2020).

27. Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613. https://doi.org/10.1093/nar/gky1131 (2019).

28. Denegri, M. et al. Stress-induced nuclear bodies are sites of accumulation of pre-mRNA processing factors. Mol. Biol. Cell 12, 3502–3514. https://doi.org/10.1091/mbc.12.11.3502 (2001).

29. Marchesini, M. et al. ILF2 is a regulator of RNA splicing and DNA damage response in 1q21-amplifed multiple myeloma. Cancer Cell 32, 88–100. https://doi.org/10.1016/j.ccell.2017.05.011 (2017).

30. Mondal, S., Begum, N. A., Hu, W. & Honjo, T. Functional requirements of AID’s higher order structures and their interaction with RNA-binding proteins. Proc. Natl. Acad. Sci. U.S.A. 113, E1545-1554. https://doi.org/10.1073/pnas.1601678113 (2016).

31. Hu, W., Begum, N. A., Mondal, S., Stanlie, A. & Honjo, T. Identifcation of DNA cleavage- and recombination-specifc hnRNP cofactors for activation-induced cytidine deaminase. Proc. Natl. Acad. Sci. U.S.A. 112, 5791–5796. https://doi.org/10.1073/pnas. 1506167112 (2015).

32. Nemec, P. et al. Gain of 1q21 is an unfavorable genetic prognostic factor for multiple myeloma patients treated with high-dose chemotherapy. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 16, 548–554. https://doi.org/10.1016/j.bbmt. 2009.11.025 (2010).

33. Hanamura, I. et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fuorescence in situ hybridization: Incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108, 1724–1732. https://doi.org/10.1182/blood-2006-03-009910 (2006).

34. Wu, K. L. et al. Abnormalities of chromosome 1p/q are highly associated with chromosome 13/13q deletions and are an adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Br. J. Haematol. 136, 615–623. https://doi.org/10.1111/j.1365-2141.2006.06481.x (2007).

35. Klein, U. et al. Chromosomal aberrations +1q21 and del(17p13) predict survival in patients with recurrent multiple myeloma treated with lenalidomide and dexamethasone. Cancer 117, 2136–2144. https://doi.org/10.1002/cncr.25775 (2011).

36. An, G. et al. Cytogenetic and clinical marks for defning high-risk myeloma in the context of bortezomib treatment. Exp. Hematol. 43, 168–176. https://doi.org/10.1016/j.exphem.2014.11.004 (2015).

37. Treon, S. P. et al. Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma. Blood 96, 3147–3153. https://doi.org/10.1182/blood.V96.9.3147 (2000).

38. Zhang, B., Gojo, I. & Fenton, R. G. Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood 99, 1885–1893. https://doi.org/10.1182/blood.v99.6.1885 (2002).

39. Inoue, J. et al. Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma. Am. J. Pathol. 165, 71–81. https://doi.org/10.1016/s0002-9440(10)63276-2 (2004).

40. Stephens, O. W. et al. An intermediate-risk multiple myeloma subgroup is defned by sIL-6r: Levels synergistically increase with incidence of SNP rs2228145 and 1q21 amplifcation. Blood 119, 503–512. https://doi.org/10.1182/blood-2011-07-367052 (2012).

41. Mani, M. et al. BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells. Can. Res. 69, 7577–7586. https://doi.org/10.1158/0008-5472.CAN-09-0773 (2009).

42. Zhan, F. et al. CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms. Blood 109, 4995–5001. https://doi.org/10.1182/blood-2006-07-038703 (2007).

43. Shaughnessy, J. D. Jr. et al. Pharmacogenomics of bortezomib test-dosing identifes hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with Total Terapy 3. Blood 118, 3512–3524. https://doi.org/10.1182/ blood-2010-12-328252 (2011).

44. Fischle, W. et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell 9, 45–57. https://doi.org/10.1016/s1097-2765(01)00429-4 (2002).

45. da Huang, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57. https://doi.org/10.1038/nprot.2008.211 (2009).

46. da Huang, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13. https://doi.org/10.1093/nar/gkn923 (2009).

47. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/ nar/28.1.27 (2000).

48. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. Publ. Protein Soc. 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).

49. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551. https://doi.org/10.1093/nar/gkaa970 (2021).

50. Sawasaki, T., Ogasawara, T., Morishita, R. & Endo, Y. A cell-free protein synthesis system for high-throughput proteomics. Proc. Natl. Acad. Sci. U.S.A. 99, 14652–14657. https://doi.org/10.1073/pnas.232580399 (2002).

51. Endo, Y. & Sawasaki, T. High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. Biotechnol. Adv. 21, 695–713. https://doi.org/10.1016/s0734-9750(03)00105-8 (2003).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る