リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ブラックホール上の様々なテンソル場の安定性解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ブラックホール上の様々なテンソル場の安定性解析

Yoshida, Daisuke 吉田, 大祐 ヨシダ, ダイスケ 神戸大学

2020.03.25

概要

The problem of solving field equations on black holes has been a long-standing challenge in physics and mathematics. A simple example is gravitational waves which were predicted in [1]. It was detected in 2015 [2]*1. But gravitational waves are not all the fields of interest on black holes. In principle, there can be other fields on the black hole. Moreover, from the point of a unified theory, the dimension is not limited to four dimensions. Therefore, it is important to consider various fields, establish a method for analyzing them, and derive their properties. However, the behavior of differential forms on a black hole has not been studied. Differential forms are a wider class of geometric quantities that include scalar fields and vector fields. In this thesis, we focus on the dynamics of the differential form on the black hole. Then, we will do the following. (i) We explain an appropriate decomposition method for a general form field under the spherical symmetry. (ii) Using the decomposition method, we derive the master equations of the arbitrary rank form field in any dimension. (iii) We study the master equation of the form field by the S-deformation method and show that the form field on the black hole is stable. (iv) By applying the WKB method, we calculate the quasinormal mode of the form field on the black hole. We also reveal the dimension dependence and the duality of the form field. Thus, we clarify the general properties of form fields on spherically symmetric black holes.

参考文献

[1] A. Einstein, “Näherungsweise Integration der Feldgleichungen der Gravitation,” Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin (Jan, 1916) 688–696.

[2] LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116 no. 6, (2016) 061102, arXiv:1602.03837 [gr-qc].

[3] R. A. Hulse and J. H. Taylor, “Discovery of a pulsar in a binary system,” Astrophys. J. 195 (1975) L51–L53.

[4] J. H. Taylor and J. M. Weisberg, “Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16,” Astrophys. J. 345 (1989) 434–450.

[5] K. Schwarzschild, “On the gravitational field of a mass point according to Einstein’s theory,” Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916 (1916) 189–196, arXiv:physics/9905030 [physics].

[6] S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43 (1975) 199–220. [,167(1975)].

[7] S. B. Giddings and S. D. Thomas, “High-energy colliders as black hole factories: The End of short distance physics,” Phys. Rev. D65 (2002) 056010, arXiv:hep-ph/0106219 [hep-ph].

[8] T. Regge and J. A. Wheeler, “Stability of a Schwarzschild singularity,” Phys. Rev. 108 (1957) 1063–1069.

[9] F. J. Zerilli, “Effective potential for even parity Regge-Wheeler gravitational perturbation equations,” Phys. Rev. Lett. 24 (1970) 737–738.

[10] V. Moncrief, “Gravitational perturbations of spherically symmetric systems. I. The exterior problem.,” Annals Phys. 88 (1974) 323–342.

[11] B. S. Kay and R. M. Wald, “Linear Stability of Schwarzschild Under Perturbations Which Are Nonvanishing on the Bifurcation Two Sphere,” Class. Quant. Grav. 4 (1987) 893–898.

[12] M. Dafermos, G. Holzegel, and I. Rodnianski, “The linear stability of the Schwarzschild solution to gravitational perturbations,” arXiv:1601.06467 [gr-qc].

[13] S. Chandrasekhar and S. L. Detweiler, “The quasi-normal modes of the Schwarzschild black hole,” Proc. Roy. Soc. Lond. A344 (1975) 441–452.

[14] B. F. Schutz and C. M. Will, “BLACK HOLE NORMAL MODES: A SEMIANALYTIC APPROACH,” Astrophys. J. 291 (1985) L33–L36.

[15] S. Iyer and C. M. Will, “Black Hole Normal Modes: A WKB Approach. 1. Foundations and Application of a Higher Order WKB Analysis of Potential Barrier Scattering,” Phys. Rev. D35 (1987) 3621.

[16] S. Iyer, “BLACK HOLE NORMAL MODES: A WKB APPROACH. 2. SCHWARZSCHILD BLACK HOLES,” Phys. Rev. D35 (1987) 3632.

[17] E. Seidel and S. Iyer, “Black-hole normal modes: A WKB approach. IV. Kerr black holes,” Phys. Rev. D41 (1990) 374–382.

[18] R. A. Konoplya and A. Zhidenko, “Quasinormal modes of black holes: From astrophysics to string theory,” Rev. Mod. Phys. 83 (2011) 793–836, arXiv:1102.4014 [gr-qc].

[19] F. R. Tangherlini, “Schwarzschild field inn dimensions and the dimensionality of space problem,” Il Nuovo Cimento (1955-1965) 27 no. 3, (Feb, 1963) 636–651. https://doi.org/10.1007/BF02784569.

[20] R. C. Myers and M. J. Perry, “Black Holes in Higher Dimensional Space-Times,” Annals Phys. 172 (1986) 304.

[21] A. Ishibashi and H. Kodama, “Stability of higher dimensional Schwarzschild black holes,” Prog. Theor. Phys. 110 (2003) 901–919, arXiv:hep-th/0305185 [hep-th].

[22] A. Ishibashi and H. Kodama, “Perturbations and Stability of Static Black Holes in Higher Dimensions,” Prog. Theor. Phys. Suppl. 189 (2011) 165–209, arXiv:1103.6148 [hep-th].

[23] H. Kodama, A. Ishibashi, and O. Seto, “Brane world cosmology: Gauge invariant formalism for perturbation,” Phys. Rev. D62 (2000) 064022, arXiv:hep-th/0004160 [hep-th].

[24] H. Kodama and A. Ishibashi, “A Master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions,” Prog. Theor. Phys. 110 (2003) 701–722, arXiv:hep-th/0305147 [hep-th].

[25] H. Kodama and A. Ishibashi, “Master equations for perturbations of generalized static black holes with charge in higher dimensions,” Prog. Theor. Phys. 111 (2004) 29–73, arXiv:hep-th/0308128 [hep-th].

[26] H. Kodama, “Perturbations and Stability of Higher-Dimensional Black Holes,” Lect. Notes Phys. 769 (2009) 427–470, arXiv:0712.2703 [hep-th].

[27] D. Lovelock, “The Einstein tensor and its generalizations,” J. Math. Phys. 12 (1971) 498–501.

[28] D. G. Boulware and S. Deser, “String Generated Gravity Models,” Phys. Rev. Lett. 55 (1985) 2656.

[29] J. T. Wheeler, “Symmetric Solutions to the Gauss-Bonnet Extended Einstein Equations,” Nucl. Phys. B268 (1986) 737–746.

[30] J. T. Wheeler, “Symmetric Solutions to the Maximally Gauss-Bonnet Extended Einstein Equations,” Nucl. Phys. B273 (1986) 732–748.

[31] T. Takahashi and J. Soda, “Stability of Lovelock Black Holes under Tensor Perturbations,” Phys. Rev. D79 (2009) 104025, arXiv:0902.2921 [gr-qc].

[32] T. Takahashi and J. Soda, “Catastrophic Instability of Small Lovelock Black Holes,” Prog. Theor. Phys. 124 (2010) 711–729, arXiv:1008.1618 [gr-qc].

[33] T. Takahashi and J. Soda, “Master Equations for Gravitational Perturbations of Static Lovelock Black Holes in Higher Dimensions,” Prog. Theor. Phys. 124 (2010) 911–924, arXiv:1008.1385 [gr-qc].

[34] T. Takahashi, Stability Analysis of Black Hole Solutions in Lovelock Theory. PhD thesis, Kyoto university, 2013.

[35] D. Yoshida and J. Soda, “Quasinormal modes of black holes in Lovelock gravity,” Phys. Rev. D93 no. 4, (2016) 044024, arXiv:1512.05865 [gr-qc].

[36] M. Kimura, “A simple test for stability of black hole by S-deformation,” Class. Quant. Grav. 34 no. 23, (2017) 235007, arXiv:1706.01447 [gr-qc].

[37] E. W. Leaver, “An Analytic representation for the quasi normal modes of Kerr black holes,” Proc. Roy. Soc. Lond. A402 (1985) 285–298.

[38] K. D. Kokkotas and B. F. Schutz, “Black-hole normal modes: A WKB approach. III. The Reissner-Nordström black hole,” Phys. Rev. D37 (1988) 3378–3387.

[39] R. A. Konoplya, “Gravitational quasinormal radiation of higher dimensional black holes,” Phys. Rev. D68 (2003) 124017, arXiv:hep-th/0309030 [hep-th].

[40] R. A. Konoplya, “Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach,” Phys. Rev. D68 (2003) 024018, arXiv:gr-qc/0303052 [gr-qc].

[41] 吉田大祐, “WKB 近似による Schwarzschild BH の準固有振動モード解析.” March, 2015.

[42] Y. Choquet-Bruhat, C. DeWitt-Morette, C. de Witt, M. Dillard-Bleick, and M. Dillard-Bleick, Analysis, Manifolds and Physics Revised Edition. Gulf Professional Publishing, 1982.

[43] R. Camporesi and A. Higuchi, “The plancherel measure for p-forms in real hyperbolic spaces,” Journal of Geometry and Physics 15 no. 1, (1994) 57 – 94. http://www.sciencedirect.com/science/article/pii/0393044094900477.

[44] V. Cardoso, J. P. S. Lemos, and S. Yoshida, “Quasinormal modes of Schwarzschild black holes in four-dimensions and higher dimensions,” Phys. Rev. D69 (2004) 044004, arXiv:gr-qc/0309112 [gr-qc].

[45] E. Chaverra, N. Ortiz, and O. Sarbach, “Linear perturbations of self-gravitating spherically symmetric configurations,” Phys. Rev. D87 no. 4, (2013) 044015, arXiv:1209.3731 [gr-qc].

[46] D.-P. Du, B. Wang, and R.-K. Su, “Quasinormal modes in pure de Sitter space-times,” Phys. Rev. D70 (2004) 064024, arXiv:hep-th/0404047 [hep-th].

[47] A. Lopez-Ortega, “Quasinormal modes of D-dimensional de Sitter spacetime,” Gen. Rel. Grav. 38 (2006) 1565–1591, arXiv:gr-qc/0605027 [gr-qc].

[48] O. Lunin, “Maxwell’s equations in the Myers-Perry geometry,” JHEP 12 (2017) 138, arXiv:1708.06766 [hep-th].

[49] D. Yoshida and J. Soda, “Quasinormal modes of p-forms in spherical black holes,” Phys. Rev. D99 no. 4, (2019) 044054, arXiv:1901.07723 [hep-th].

[50] O. Lunin, “Excitations of the Myers-Perry Black Holes,” arXiv:1907.03820 [hep-th].

[51] R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics,” Phys Rev Lett 11 (1963) 237–238.

[52] R. H. Boyer and R. W. Lindquist, “Maximal analytic extension of the Kerr metric,” J. Math. Phys. 8 (1967) 265.

[53] Y. Chervonyi and O. Lunin, “Killing(-Yano) Tensors in String Theory,” JHEP 09 (2015) 182, arXiv:1505.06154 [hep-th].

参考文献をもっと見る