リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Phase behavior of oxidized Ce and Gd-doped (U,Zr)O₂」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Phase behavior of oxidized Ce and Gd-doped (U,Zr)O₂

Sun, Yifan Watanabe, Shiho Muta, Hiroaki Ohishi, Yuji Kurosaki, Ken 京都大学 DOI:10.1080/00223131.2022.2112782

2023

概要

Re-criticality analysis of the fuel debris at the Fukushima Dai-ichi Nuclear Power Plant is the key step to ensure the safe retrieval and storage of the fuel debris. Knowledge of the amount and distribution of Pu and Gd within the fuel debris greatly contributes to such analysis as they directly affect the fission-chain reaction. However, little is known about how Pu-doped and Gd-doped (U, Zr)O₂ solid solutions oxidize and whether phases concentrated in Pu or Gd form. In this study, CeO₂ is used as a surrogate material for PuO₂ because of the similarities in their crystal structures and valence states. (U₀.₉-xZr₀.₁Cex)O₂ and (U₀.₉-xZr₀.₁Gdx)O₂ solid solutions are prepared by sintering under an argon atmosphere and oxidized at 1073 K in air for 2 hours to simulate heavily oxidized fuel debris. Samples doped with 5 at% Ce and Gd contain only an orthorhombic-U3O8-x phase after oxidation, but its diffraction peaks’ intensities decrease as the amount of dopant increases. The phase transformation of (U₀.₉-xZr₀.₁Gdx)O₂, with further oxidation, is found to be cubic-(U, Zr, Gd)O₂+x → orthorhombic-(U, Zr, Gd)₃O₇±x → orthorhombic-(U, Zr, Gd)₃O₈-x. SEM/EDS analysis reveals that Ce and Gd are uniformly distributed in the (U₀.₉-xZr₀.₁REx)O₂ (RE = Ce, Gd) samples after oxidation.

この論文で使われている画像

参考文献

[1] The Fukushima Daiichi Accident, Tech. rep., International Atomic Energy Agency, Vienna, Austria

Fo

(2015).

[2] N. Akiyama, H. Sato, K. Naito, Y. Naoi, T. Katsuta, Subsidy for decommissioning and contaminated

rP

water countermeasures project (improvement of comprehensive core status monitoring) [廃炉・汚

染水対策事業費本補助金(総合的な炉内状況把握の高度化)], Tech. rep., International Research

ee

Institute for Nuclear Decommissioning (Jun. 2018).

rR

[3] R. K. McCardell, M. L. Russell, D. W. Akers, C. S. Olsen, Summary of TMI-2 core sample examinations, Nucl. Eng. Des. 118 (3) (1990) 441–449.

ev

[4] D. Akers, S. Jensen, B. Schuetz, Examination of relocated fuel debris adjacent to the lower head

iew

of the TMI-2 reactor vessel, Tech. rep., Nuclear Regulatory Commission, Washington, DC (United

States). (1994).

On

[5] T. Kitagaki, H. Ikeuchi, K. Yano, H. Ogino, Characterization of the VULCANO test products for

fuel debris removal from the Fukushima Daiichi Nuclear Power Plant, Prog. Nucl. Sci. Technol.

ly

(2018).

[6] T. Kitagaki, K. Yano, H. Ogino, T. Washiya, Thermodynamic evaluation of the solidification phase of

molten core–concrete under estimated Fukushima Daiichi Nuclear Power Plant accident conditions,

J. Nucl. Mater. 486 (2017) 206–215.

[7] F. Nakamori, Y. Ohishi, M. Kumagai, H. Muta, K. Kurosaki, K. Fukumoto, S. Yamanaka, Mechanical

and Thermal Properties of Fe2 B, Trans. At. Energy Soc. Japan 15 (4) (2016) 223–228.

[8] D. Okada, H. Ishii, Y. Ohishi, H. Muta, K. Kurosaki, Thermal and Mechanical Properties of Fe2 Zr,

Trans. At. Energy Soc. Japan 18 (1) (2019) 37–42.

10

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Page 11 of 30

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Article

[9] Y. Sun, Y. Abe, H. Muta, Y. Ohishi, Mechanical and thermal properties of Zr-B and Fe-B alloys,

J. Nucl. Sci. Technol. 57 (8) (2020) 917–925.

[10] Y. Ohishi, M. Sugizaki, Y. Sun, H. Muta, K. Kurosaki, Thermophysical and mechanical properties

of CrB and FeB, J. Nucl. Sci. Technol. 56 (9-10) (2019) 859–865.

[11] F. Nakamori, Y. Ohishi, H. Muta, K. Kurosaki, K. Fukumoto, S. Yamanaka, Mechanical and thermal

properties of bulk ZrB2 , J. Nucl. Mater. 467 (2015) 612–617.

[12] F. Nakamori, Y. Ohishi, H. Muta, K. Kurosaki, K. Fukumoto, S. Yamanaka, Mechanical and thermal

Fo

properties of ZrSiO4 , J. Nucl. Sci. Technol. 54 (11) (2017) 1267–1273.

rP

[13] Y. Ohishi, Y. Sun, Y. Ooi, H. Muta, Mechanical properties and thermal conductivity of (U,Zr)SiO4 ,

J. Nucl. Mater. 556 (2021) 153160.

ee

[14] T. Kitagaki, H. Ikeuchi, K. Yano, L. Brissonneau, B. Tormos, R. Domenger, J. Roger, T. Washiya,

rR

Effect of quenching on molten core-concrete interaction product, J. Nucl. Sci. Technol. 56 (9-10)

(2019) 902–914.

ev

[15] C. H. Zheng, H. P. Wang, P. F. Zou, L. Hu, B. Wei, Determining thermophysical properties of normal

iew

and metastable liquid Zr-Fe alloys by electrostatic levitation method, Metall. Mater. Trans. A 51

(2020) 4074–4085.

[16] A. Seibert, D. Staicu, D. Bottomley, M. Cologna, J. Boshoven, H. Hein, E. Kassim, S. N. M. Ern-

On

stberger, D. Robba, R. Konings, Thermophysical properties of U, Zr-oxides as prototypic corium

ly

materials, J. Nucl. Mater. 520 (2019) 165–177.

[17] Y. Ohishi, K. Kurokawa, Y. Sun, H. Muta, Thermophysical properties of molten Zr1-x Ox (x=0.1,

0.2) measured by electrostatic levitation, J. Nucl. Mater. 528 (2020) 151873.

[18] Y. Ohishi, H. Muta, K. Kurosaki, J. T. Okada, T. Ishikawa, Y. Watanabe, S. Yamanaka, Thermophysical properties of molten core materials: Zr–Fe alloys measured by electrostatic levitation, J.

Nucl. Sci. Technol. 53 (12) (2016) 1943–1950.

[19] K. Nakajima, Issue on Criticality Safety Control of Fuel Debris - Preparation for the Decommissioning of Reactors at the Fukushima Daiichi Nuclear Power Plant, J. At. Energy Soc. Japan 56 (4)

11

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Page 12 of 30

Article

(2014) 230–234.

[20] I. R. I. for Nuclear Decommissioning, Development of analysis and estimation technologies for fuel

debris characterization, results for FY2019 (9 2020).

[21] A. Kirishima, M. Hirano, T. Sasaki, N. Sato, Leaching of actinide elements from simulated fuel

debris into seawater, J. Nucl. Sci. Technol. 52 (10) (2015) 1240–1246.

[22] B. Grambow, A. Nitta, A. Shibata, Y. Koma, S. Utsunomiya, R. Takami, K. Fueda, T. Ohnuki,

C. Jegou, H. Laffolley, et al., Ten years after the NPP accident at Fukushima: review on fuel debris

Fo

behavior in contact with water, J. Nucl. Sci. Technol. 59 (1) (2022) 1–24.

rP

[23] P. C. Burns, R. C. Ewing, A. Navrotsky, Nuclear fuel in a reactor accident, Science 335 (6073) (2012)

1184–1188.

ee

[24] J. Belle, Uranium dioxide: properties and nuclear applications, Vol. 4, Naval Reactors, Division of

rR

Reactor Development, US Atomic Energy Commission, 1961.

[25] R. J. McEachern, P. Taylor, A review of the oxidation of uranium dioxide at temperatures below

ev

400C, J. Nucl. Mater. 254 (2-3) (1998) 87–121.

iew

[26] P. Taylor, E. A. Burgess, D. G. Owen, An x-ray diffraction study of the formation of β-uo2. 33 on

uo2 pellet surfaces in air at 229 to 275° c, J. Nucl. Mater. 88 (1) (1980) 153–160.

[27] S. R. Teixeira, K. Imakuma, High temperature x-ray diffraction study of the u4o9 formation on uo2

On

sintered plates, J. Nucl. Mater. 178 (1) (1991) 33–39.

ly

[28] L. Thomas, R. Einziger, H. Buchanan, Effect of fission products on air-oxidation of LWR spent fuel,

J. Nucl. Mater. 201 (1993) 310–319.

[29] V. Tennery, T. Godfrey, Oxidation properties of (u, pu) o2 solid solutions, J. Am. Ceram. Soc. 56 (3)

(1973) 129–133.

[30] J. Rouault, J. Girardin, Heatings of untight lmfbr fuel elements under oxidising atmospheres: French

experience review, in: Proceedings of a Workshop on Chemical Reactivity of Oxide Fuel and Fission

Product Release. Ed. KA Simpson and P. Wood (Berkeley, UK, CEGB, 1987), 1987, pp. 245–260.

[31] Z. Talip, T. Wiss, P. E. Raison, J. Paillier, D. Manara, J. Somers, R. J. Konings, Raman and X-ray

12

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Page 13 of 30

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Article

studies of uranium–lanthanum-mixed oxides before and after air oxidation, J. Am. Ceram. Soc. 98 (7)

(2015) 2278–2285.

[32] W. Wilson, C. Alexander, A. Gerds, Stabilization of uo2, J. Inorg. Nucl. 20 (3-4) (1961) 242–251.

[33] R. McEachern, D. Doern, D. Wood, The effect of rare-earth fission products on the rate of U3 O8

formation on UO2 , J. Nucl. Mater. 252 (1) (1998) 145–149.

[34] T. A. Olds, S. E. Karcher, K. W. Kriegsman, X. Guo, J. S. McCloy, Oxidation and anion lattice

defect signatures of hypostoichiometric lanthanide-doped UO2 , J. Nucl. Mater. 530 (2020) 151959.

Fo

[35] Y.-K. Ha, J. Lee, J.-G. Kim, J.-Y. Kim, Effect of Ce doping on UO2 structure and its oxidation

rP

behavior, J. Nucl. Mater. 480 (2016) 429–435.

[36] S. K. Sali, M. Keskar, R. Phatak, K. Krishnan, G. P. Shelke, P. P. Muhammed Shafeeq, S. Kannan,

ee

Oxidation behavior of (U1-y Cey )O2.00 ; (y = 0.21, 0.28 and 0.44) solid solutions under different oxygen

rR

potentials. Thermogravimetric and in situ X-ray diffraction studies, J. Nucl. Mater. 510 (2018) 499–

512.

ev

[37] H. Nawada, P. Sriramamurti, K. Kutty, S. Rajagopalan, R. Yadav, P. Rao, C. Mathews, Oxidation

iew

and phase behaviour studies of the U-Ce-O system, J. Nucl. Mater. 139 (1) (1986) 19–26.

[38] Y.-K. Ha, J.-G. Kim, Y.-J. Park, W.-H. Kim, Studies on the air-oxidation behavior of uranium

dioxide I. Phase transformation from (U1-y Gdy )O2 to (U1-y Gdy )3 O8 , J. Nucl. Sci. Technol. 39 (2002)

On

772–775.

ly

[39] J.-G. Kim, Y.-K. Ha, S.-D. Park, K.-Y. Jee, W.-H. Kim, Effect of a trivalent dopant, Gd3+ , on the

oxidation of uranium dioxide, J. Nucl. Mater. 297 (3) (2001) 327–331.

[40] R. D. Scheele, B. D. Hanson, A. M. Casella, Effect of added gadolinium oxide on the thermal air

oxidation of uranium dioxide, J. Nucl. Mater. 552 (2021) 153008.

[41] N. Kulkarni, K. Krishnan, U. Kasar, S. Rakshit, S. Sali, S. Aggarwal, Thermal studies on fluorite

type Zry U1-y O2 solid solutions, J. Nucl. Mater. 384 (2) (2009) 81–86.

[42] R. Vauchy, P. Fouquet-M´etivier, P. M. Martin, C. Maillard, I. Solinhac, C. Gu´eneau, C. L´eorier,

New sample stage for characterizing radioactive materials by X-ray powder diffraction: application

13

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Page 14 of 30

Article

on five actinide dioxides ThO2 , UO2 , NpO2 , PuO2 and AmO2 , J. Appl. Crystallogr. 54 (2) (2021)

636–643.

[43] J. D. McCullough, An X-ray study of the rare-earth oxide systems: CeIV —NdIII , CrIV —PrIII ,

CeIV —PrIV and PrIV —NdIII , J. Am. Chem. Soc. 72 (3) (1950) 1386–1390.

[44] R. C. Ewing, Long-term storage of spent nuclear fuel, Nat. Mater. 14 (3) (2015) 252–257.

[45] Y. Ando, H. Takano, Estimation of lwr spent fuel composition (1999).

[46] Characteristics and use of urania-gadolinia fuels, Tech. rep., INTERNATIONAL ATOMIC ENERGY

Fo

AGENCY, Vienna, Austria (1995).

rP

[47] S. Sali, N. Kulkarni, K. Krishnan, S. Achary, A. Tyagi, Oxidation/reduction studies on Zry U1-y O2+x

and delineation of a new orthorhombic phase in U–Zr–O system, J. Solid State Chem. 181 (8) (2008)

ee

1859–1866.

rR

[48] V. A. Alekseyev, L. A. Anan’yeva, R. P. Rafal’skiy, Effects of composition on lattice parameter of

UO2+x , Int. Geol. Rev. 23 (10) (1981) 1229–1236.

ev

[49] J. M. Elorrieta, L. J. Bonales, N. Rodr´ıguez-Villagra, V. G. Baonza, J. Cobos, A detailed Raman

iew

and X-ray study of UO2+x oxides and related structure transitions, Phys. Chem. Chem. Phys. 18

(2016) 28209–28216.

[50] F. Bruneval, M. Freyss, J.-P. Crocombette, Lattice constant in nonstoichiometric uranium dioxide

On

from first principles, Phys. Rev. Materials 2 (2018) 023801.

phase in air, J. Inorg. Nucl. Chem. 39 (1) (1977) 75–85.

ly

[51] R. Ackermann, A. Chang, C. A. Sorrell, Thermal expansion and phase transformations of the U3 O8-z

[52] N. Brett, A. Fox, Oxidation products of plutonium dioxide-uranium dioxide solid solutions in air at

750 c, J. Inorg. Nucl. 28 (5) (1966) 1191–1203.

[53] R. V. Krishnan, G. Panneerselvam, P. Manikandan, A. MP, K. Nagarajan, Heat capacity and thermal

expansion of uranium-gadolinium mixed oxides, J. Nucl. Radiochem. Sci. 10 (1) (2009) 119–126.

[54] T. Ohmichi, S. Fukushima, A. Maeda, H. Watanabe, On the relation between lattice parameter and

O/M ratio for uranium dioxide-trivalent rare earth oxide solid solution, J. Nucl. Mater. 102 (1-2)

14

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Page 15 of 30

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Article

(1981) 40–46.

[55] N. Liu, J. Kim, J. Lee, Y.-S. Youn, J.-G. Kim, J.-Y. Kim, J. J. No¨el, D. W. Shoesmith, Influence

of Gd doping on the structure and electrochemical behavior of UO2 , Electrochim. Acta 247 (2017)

496–504.

[56] X. Zhang, Dept. of Earth and Environmental Sciences, Univ. of Michigan, Ann Arbor, MI, USA.

Private Communication (2016).

[57] R.G.J.Ball, M.A.Mignanelli, T.I.Barry, J.A.Gisby, The calculation of phase equilibria of oxide core-

Fo

concrete systems, J. Nucl. Mater. 201 (1993) 238–249.

rP

[58] M. Hong, H. Chun, C. Kwon, B. Han, Outstanding stability of Gd-doped UO2 against surface

oxidation: First-principles study, Appl. Surf. Sci. 589 (2022) 152955.

iew

ev

rR

ee

ly

On

15

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Page 16 of 30

Article

Table 1 Lattice parameters of the (U,Zr,Ce)O2 samples sintered under Ar

Sample

(U0.9 Zr0.1 )O2

(U0.85 Zr0.1 Ce0.05 )O2

Lattice parameter, nm

0.5406

0.5418

iew

ev

rR

ee

rP

Fo

ly

On

16

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Page 17 of 30

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Article

Table 2 Lattice parameters of (U0.9 Zr0.1 )O2 samples sintered under different conditions

Sample

(U0.9 Zr0.1 )O2

(U0.9 Zr0.1 )O2+x

Lattice parameter, nm

0.5440

0.5440

0.5406

0.5385

0.5385

0.5405

Comments

1673 K, Ar/8%H2 [47]

1673 K, Ar then Ar/8%H2 [41]

This study

1673 K, Ar[47]

1673 K, Ar[41]

773 K, air[41]

iew

ev

rR

ee

rP

Fo

ly

On

17

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Page 18 of 30

Article

Table 3 Lattice parameters of the oxidized (U,Zr,Ce)O2 samples

Sample

Oxidized (U0.9 Zr0.1 )O2

Oxidized (U0.85 Zr0.1 Ce0.05 )O2

Lattice parameters, nm

0.679 1.1704 0.4131

0.667 1.1717 0.4135

iew

ev

rR

ee

rP

Fo

ly

On

18

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Page 19 of 30

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Article

Table 4 Lattice parameters of the (U1-x Zr0.1 Gdx )O2 samples sintered under Ar

Sample

(U0.85 Zr0.1 Gd0.05 )O2

(U0.80 Zr0.1 Gd0.1 )O2

(U0.75 Zr0.1 Gd0.15 )O2

(U0.70 Zr0.1 Gd0.2 )O2

(U0.65 Zr0.1 Gd0.25 )O2

Lattice parameter, nm

0.5414

0.5411

0.5410

0.5416

0.5411

iew

ev

rR

ee

rP

Fo

ly

On

19

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Page 20 of 30

Article

Table 5 Lattice parameters of the oxidized (U1-x Zr0.1 Gdx )O2 samples

Sample

Oxidized

Oxidized

Oxidized

Oxidized

Oxidized

(U0.85 Zr0.1 Gd0.05 )O2

(U0.80 Zr0.1 Gd0.1 )O2

(U0.75 Zr0.1 Gd0.15 )O2

(U0.70 Zr0.1 Gd0.2 )O2

(U0.65 Zr0.1 Gd0.25 )O2

Cubic, (nm)

0.5403

0.5402

0.5403

0.5410

Orthorhombic, (nm) Orthorhombic

space group

0.656 1.174 0.4139

Cmmm, 65

0.664 1.190 0.4131

Cmmm, 65

0.523 0.5479 0.561

Cmcm, 63

0.521 0.551 0.553

Cmcm, 63

iew

ev

rR

ee

rP

Fo

ly

On

20

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Page 21 of 30

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Article

Figure Captions

Figure 1 UO2 -ZrO2 phase diagram[57]

Figure 2 XRD patterns of the (U,Zr,Ce)O2 samples sintered under Ar with reference[56]

Figure 3 SEM/EDS images of the (U,Zr,Ce)O2 samples sintered under Ar.

Fo

Figure 4 XRD patterns of the oxidized (U,Zr,Ce)O2 samples with reference[51].

rP

Figure 5 SEM/EDS images of the oxidized (U,Zr,Ce)O2 samples

ee

Figure 6 XRD patterns of the (U1-x Zr0.1 Gdx )O2 samples sintered under Ar with

ev

rR

reference[56]

Figure 7 SEM/EDS images of the (U1-x Zr0.1 Gdx )O2 samples sintered under Ar.

iew

Figure 8 XRD patterns of the oxidized (U1-x Zr0.1 Gdx )O2 samples with references[47, 51, 56].

On

Figure 9 SEM/EDS images of the oxidized (U,Zr,Gd)O2 samples

ly

21

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Page 22 of 30

Article

rR

ee

rP

Fo

iew

ev

Figure 1 UO2 -ZrO2 phase diagram[57]

ly

On

22

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Page 23 of 30

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Article

ev

rR

ee

rP

Fo

Figure 2 XRD patterns of the (U,Zr,Ce)O2 samples sintered under Ar with reference[56]

iew

ly

On

23

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Page 24 of 30

Article

Fo

Figure 3 SEM/EDS images of the (U,Zr,Ce)O2 samples sintered under Ar.

iew

ev

rR

ee

rP

ly

On

24

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Page 25 of 30

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Article

ev

rR

ee

rP

Fo

Figure 4 XRD patterns of the oxidized (U,Zr,Ce)O2 samples with reference[51].

iew

ly

On

25

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Page 26 of 30

Article

Fo

Figure 5 SEM/EDS images of the oxidized (U,Zr,Ce)O2 samples

iew

ev

rR

ee

rP

ly

On

26

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Page 27 of 30

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Article

ev

rR

ee

rP

Fo

Figure 6 XRD patterns of the (U1-x Zr0.1 Gdx )O2 samples sintered under Ar with reference[56]

iew

ly

On

27

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Page 28 of 30

Article

iew

ev

rR

ee

rP

Fo

Figure 7 SEM/EDS images of the (U1-x Zr0.1 Gdx )O2 samples sintered under Ar.

ly

On

28

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Page 29 of 30

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Article

ev

rR

ee

rP

Fo

Figure 8 XRD patterns of the oxidized (U1-x Zr0.1 Gdx )O2 samples with references[47, 51, 56].

iew

ly

On

29

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Journal of Nuclear Science and Technology

J. Nucl. Sci. & Technol.

Page 30 of 30

Article

iew

ev

rR

ee

rP

Fo

Figure 9 SEM/EDS images of the oxidized (U,Zr,Gd)O2 samples

ly

On

30

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る