リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「プロトン導電性ジルコネートと希土類酸化物中の水素同位体の振舞いの研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

プロトン導電性ジルコネートと希土類酸化物中の水素同位体の振舞いの研究

エムディ, カリド, ホサイン KHALID HOSSAIN, MD 九州大学

2021.09.24

概要

In the high-temperature electrolysis method, proton-conducting oxides are potential materials in the hydrogen isotope separation and steam-electrolysis processes in hydrogen energy and nuclear fusion systems. In the fusion reactor fuel system, the proton-conducting oxides are used for purifying the tritium-containing exhaust gases to measure tritium concentration and to re-fuel of purified tritium. Other oxide materials such as rare-earth oxides also play an important role as a barrier material in preventing hydrogen permeation out of structural materials in the fusion reactor. Though it is important to understand hydrogen isotope behaviors especially the solubility and diffusivity of hydrogen in such oxide materials to use them as a functional material in a fusion reactor, data are limited and scattered as well. Therefore the motivation of this research is an in- depth study on the hydrogen isotopes behaviors in the oxide materials.

In the present study, as the proton-conduction oxides (PCO), zirconates were selected: the Y- and Co-doped barium zirconates, i.e., BaZr0.9Y0.1O2.95 (BZY), and BaZr0.955Y0.03Co0.015O2.97 (BZYC), and the In-doped calcium zirconate, i.e., CaZr0.9In0.1O2.95 (CZI). As the rare-earth oxides (REOs), Y2O3, Sm2O3, Eu2O3, Gd2O3, Dy2O3, Er2O3, and Yb2O3 were selected. In order to precisely measure the hydrogen behavior in oxide materials, two powerful techniques are adopted: Tritium tracer methods like the tritium imaging plate (TIP) technique and thermal desorption spectroscopy (TDS) method. The Tritium Migration Analysis Program, Version 4 (TMAP4) was used to compare the experimental results and understand the hydrogen behavior in the oxide materials. To clarify the proton conductivity and its isotopic effect in the oxide materials, hydrogen conductivity data of the PCOs and REOs were obtained in various gas atmospheres.

The thesis includes five chapters explaining the various experimental and simulation findings.

Chapter 1 gives an overview and importance of the two potential next-generation energy systems, i.e., nuclear fusion reactors, and hydrogen fuel cells where hydrogen or hydrogen isotopes would be used as fuel. A brief description of proton- conducting oxides, perovskite zirconate oxides is provided, which could be used as potential materials for electrochemical hydrogen devices. Finally, this chapter clarifies the motivation and objectives of the thesis.

Chapter 2 provides the experimental details of all studies, like sample preparation, characterizations, and analysis. Different types of hydrogen isotopes like HT gas, DT gas, DTO vapor, D2 gas, and D2O vapor were used to exposure to the samples for the TIP and TDS experiments. Conductivity measurement of the samples to examine the proton conductivity is provided. The principal of the TIP technique, TDS method, and TMAP4 simulation consideration are also briefly discussed in this chapter.

Chapter 3 presents the structural and morphological results of the sintered BZO samples. Then tritium, deuterium, and heavy water exposure results for the zirconates samples were provided to explain the hydrogen behavior such as dissolution, release and distribution, and to determine hydrogen solubility, and diffusivity properties. Hydrogen dissolution and release behavior along with the hydrogen solubility were analyzed using the TDS method. Hydrogen distribution, solubility, and diffusivity were discussed using the TIP technique. This chapter also provides the comparative conductivity results of the BZY and BZYC samples under various hydrogen atmospheres to understand the possible isotopic effect.

Chapter 4 presents the structural and morphological results of the sintered REO samples based on the TDS method and TIP technique. TMAP4 simulation results were used to discuss and verify the obtained hydrogen behavior of the REO samples obtained from TDS and TIP methods. This chapter also provides comparative conductivity results of the Gd2O3 sample under various hydrogen atmospheres to understand the possible isotopic effect and proton conducting properties.

In Chapter 5, the thesis ends with the major findings where the originality and contribution of the author and recommendations for future improvement have been made.

In summary, one order higher solubility and diffusivity for BZYC than BZY was found. It suggests that only a small amount of sintering-aid cobalt doping along with yttrium may play a vital role in the enhancement of the electrochemical activity of the proton conducting BaZrO3 under HT or DTO exposure conditions. From the REO’s experimental results and discussion, the REO materials were categorized into two kinds in terms of their crystal structure and hydrogen solubility: monoclinic specimens of Sm2O3, Eu2O3, and Gd2O3 had relatively high hydrogen solubility and diffusivity, while cubic Y2O3, Dy2O3, Er2O3, and Yb2O3 had lower ones. The REOs studies suggest that the cubic REOs couldbe suitable in a nuclear fusion reactor as the tritium barrier materials.

この論文で使われている画像

参考文献

[1] R.K. Pachauri, L.A. Meyer, Climate change 2014: Synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, Geneva, Switzerland, 2014.

[2] R.K. Pachauri, A. Reisinger, Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental panel on climate change, Geneva, Switzerland, 2007.

[3] Annual report on energy, Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry, Tokyo, Japan, 2020.

[4] M. Sakane, The final goal is to secure alternative energy after fossil resource depletion, J. At. Energy Soc. Japan. 60 (2018) 655–655. doi:10.3327/jaesjb.60.11_655.

[5] J. Ongena, G. Van Oost, Energy for future centuries: Prospects for fusion power as a future energy source, Fusion Sci. Technol. 61 (2012) 3–16. doi:10.13182/FST12-A13488.

[6] P.E. V. de Miranda, Hydrogen energy, in: Sci. Eng. Hydrog. Energy Technol., Elsevier, 2019: pp. 1–38. doi:10.1016/B978-0-12-814251-6.00001-0.

[7] H. Ninomiya, H. Kubo, M. Akiba, Fusion research and development in the ITER (Ⅰ), J. At. Energy Soc. Japan. 50 (2008) 426–433. doi:10.3327/jaesjb.50.7_426.

[8] K. Yamazaki, T. Oishi, Tritium fuel system assessment on economics and CO2 emissions in DT fusion reactors, Fusion Sci. Technol. 60 (2011) 1109–1112. doi:10.13182/FST11-A12609.

[9] Y. Iwai, T. Hayashi, K. Kobayashi, M. Nishi, Case study on unexpected tritium release happened in a ventilated room of fusion reactor, Fusion Sci. Technol. 48 (2005) 460–463. doi:10.13182/FST05-A965.

[10] T. Tanabe, M. Nishikawa, Fuel flow and balance in a D–T fusion reactor, in: Tritium Fuel Fusion React., Springer Japan, Tokyo, 2017: pp. 49–71. doi:10.1007/978-4-431-56460-7_3.

[11] K. Isobe, Contamination and decontamination, in: Tritium Fuel Fusion React., Springer Japan, Tokyo, 2017: pp. 231–241. doi:10.1007/978-4-431-56460-7_10.

[12] M. Toyoshima, H. Honda, H. Watanabe, Y. Masuda, K. Kamiya, Development of a sensitive assay system for tritium risk assessment using rev 1 transgenic mouse, Fusion Sci. Technol. 60 (2011) 1204–1207. doi:10.13182/FST11-A12632.

[13] IAEA, Safe handling of tritium review of data and experience, in: IAEA (Ed.), Tech. Reports Ser. No. 324, International Atomic Energy Agency, Vienna, 1991: pp. 1–130.

[14] Y. Iwai, 6.8 Tritium system, Radioisotopes. 67 (2018) 195–198. doi:10.3769/radioisotopes.67.195.

[15] https://www.iter.org/mach/FuelCycle, (n.d.).

[16] K. Katayama, M. Nishikawa, Safety confinement system, in: Tritium Fuel Fusion React., Springer Japan, Tokyo, 2017: pp. 297–329. doi:10.1007/978-4- 431-56460-7_14.

[17] C.W. Forsberg, D.M. Carpenter, D.G. Whyte, R. Scarlat, L. Wei, Tritium control and capture in salt-cooled fission and fusion reactors, Fusion Sci. Technol. 71 (2017) 584–589. doi:10.1080/15361055.2017.1289450.

[18] R.J. Pearson, O. Comsa, L. Stefan, W.J. Nuttall, Romanian tritium for nuclear fusion, Fusion Sci. Technol. 71 (2017) 610–615. doi:10.1080/15361055.2017.1290931.

[19] K.A. Terrani, Accident tolerant fuel cladding development: Promise, status, and challenges, J. Nucl. Mater. 501 (2018) 13–30. doi:10.1016/j.jnucmat.2017.12.043.

[20] K. Dylst, J. Seghers, F. Druyts, J. Braet, Removing tritium and other impurities during industrial recycling of beryllium from a fusion reactor, Fusion Sci. Technol. 54 (2008) 215–218. doi:10.13182/FST08-A1798.

[21] K. Katayama, M. Nishikawa, Recovery of tritium bred in blanket, in: Tritium Fuel Fusion React., Springer Japan, Tokyo, 2017: pp. 273–294. doi:10.1007/978-4-431-56460-7_13.

[22] V. Nemanič, Hydrogen permeation barriers: Basic requirements, materials selection, deposition methods, and quality evaluation, Nucl. Mater. Energy. 19 (2019) 451–457. doi:10.1016/j.nme.2019.04.001.

[23] G.W. Hollenberg, E.P. Simonen, G. Kalinin, A. Terlain, Tritium/hydrogen barrier development, Fusion Eng. Des. 28 (1995) 190–208. doi:10.1016/0920- 3796(95)90039-X.

[24] M. Lozada-Hidalgo, S. Zhang, S. Hu, A. Esfandiar, I. V. Grigorieva, A.K. Geim, Scalable and efficient separation of hydrogen isotopes using graphene- based electrochemical pumping, Nat. Commun. 8 (2017) 15215. doi:10.1038/ncomms15215.

[25] J.Y. Kim, H. Oh, H.R. Moon, Hydrogen isotope separation in confined nanospaces: Carbons, zeolites, metal–organic frameworks, and covalent organic frameworks, Adv. Mater. 31 (2019) 1805293. doi:10.1002/adma.201805293.

[26] P. Breeze, Hydrogen energy storage, in: Power Syst. Energy Storage Technol., Elsevier, 2018: pp. 69–77. doi:10.1016/B978-0-12-812902-9.00008-0.

[27] M. Nishikawa, S. Fukada, Y. Watanabe, Hydrogen Aiming for future energy, J. At. Energy Soc. Japan / At. Energy Soc. Japan. 48 (2006) 977–977. doi:10.3327/jaesj.48.977.

[28] B. Sundén, Fuel cell types - overview, in: Hydrog. Batter. Fuel Cells, Elsevier, 2019: pp. 123–144. doi:10.1016/B978-0-12-816950-6.00008-7.

[29] P. Boch, J.-C. Niepce, eds., Ceramic materials, ISTE, London, UK, 2007. doi:10.1002/9780470612415.

[30] T. Bak, J. Nowotny, C.C. Sorrell, Electrical properties of metal oxides at elevated temperatures, Key Eng. Mater. 125–126 (1996) 1–80. doi:10.4028/www.scientific.net/KEM.125-126.1.

[31] D. Jeannot, J. Pinard, P. Ramoni, E.M. Jost, Physical and chemical properties of metal oxide additions to Ag-SnO/sub 2/ contact materials and predictions of electrical performance, IEEE Trans. Components, Packag. Manuf. Technol. Part A. 17 (1994) 17–23. doi:10.1109/95.296363.

[32] D. Phelan, Y. Suzuki, S. Wang, A. Huq, C. Leighton, Structural, transport, and magnetic properties of narrow bandwidth Nd1−xCaxCoO3−δ and comparisons to Pr1−xCaxCoO3−δ, Phys. Rev. B. 88 (2013) 075119. doi:10.1103/PhysRevB.88.075119.

[33] C. Linsmeier, M. Rieth, J. Aktaa, T. Chikada, A. Hoffmann, J. Hoffmann, A. Houben, H. Kurishita, X. Jin, M. Li, A. Litnovsky, S. Matsuo, A. von Müller, V. Nikolic, T. Palacios, R. Pippan, D. Qu, J. Reiser, J. Riesch, T. Shikama, R. Stieglitz, T. Weber, S. Wurster, J.-H. You, Z. Zhou, Development of advanced high heat flux and plasma-facing materials, Nucl. Fusion. 57 (2017) 092007. doi:10.1088/1741-4326/aa6f71.

[34] L. Dai, L. Wang, G. Shao, Y. Li, A novel amperometric hydrogen sensor based on nano-structured ZnO sensing electrode and CaZr0.9In0.1O3−δ electrolyte, Sensors Actuators B Chem. 173 (2012) 85–92. doi:10.1016/j.snb.2012.06.012.

[35] M.D. Gonçalves, P.S. Maram, A. Navrotsky, R. Muccillo, Effect of synthesis atmosphere on the proton conductivity of Y-doped barium zirconate solid electrolytes, Ceram. Int. 42 (2016) 13689–13696. doi:10.1016/j.ceramint.2016.05.167.

[36] D. Xue, K. Betzler, H. Hesse, Dielectric constants of binary rare-earth compounds, J. Phys. Condens. Matter. 12 (2000) 3113–3118. doi:10.1088/0953-8984/12/13/319.

[37] G. Azimi, R. Dhiman, H.-M. Kwon, A.T. Paxson, K.K. Varanasi, Hydrophobicity of rare-earth oxide ceramics, Nat. Mater. 12 (2013) 315–320. doi:10.1038/nmat3545.

[38] R. Gillen, S.J. Clark, J. Robertson, Nature of the electronic band gap in lanthanide oxides, Phys. Rev. B. 87 (2013) 125116. doi:10.1103/PhysRevB.87.125116.

[39] T. Chikada, A. Suzuki, T. Kobayashi, H. Maier, T. Terai, T. Muroga, Microstructure change and deuterium permeation behavior of erbium oxide coating, J. Nucl. Mater. 417 (2011) 1241–1244. doi:10.1016/j.jnucmat.2010.12.283.

[40] T. Chikada, T. Tanaka, K. Yuyama, Y. Uemura, S. Sakurada, H. Fujita, X.-C. Li, K. Isobe, T. Hayashi, Y. Oya, Crystallization and deuterium permeation behaviors of yttrium oxide coating prepared by metal organic decomposition, Nucl. Mater. Energy. 9 (2016) 529–534. doi:10.1016/j.nme.2016.06.009.

[41] W. Mao, T. Chikada, A. Suzuki, T. Terai, H. Matsuzaki, Hydrogen isotope dissolution, diffusion, and permeation in Er2O3, J. Power Sources. 303 (2016) 168–174. doi:10.1016/j.jpowsour.2015.10.091.

[42] K.D. Kreuer, Proton-conducting oxides, Annu. Rev. Mater. Res. 33 (2003) 333–359. doi:10.1146/annurev.matsci.33.022802.091825.

[43] M.K. Hossain, R. Chanda, A. El-Denglawey, T. Emrose, M.T. Rahman, M.C. Biswas, K. Hashizume, Recent progress in barium zirconate proton conductors for electrochemical hydrogen device applications: A review, Ceram. Int. 47 (2021) 23725–23748. doi:10.1016/j.ceramint.2021.05.167.

[44] M.K. Hossain, M.C. Biswas, R.K. Chanda, M.H.K. Rubel, M.I. Khan, K. Hashizume, A review on experimental and theoretical studies of perovskite barium zirconate proton conductors, Emergent Mater. (2021). doi:10.1007/s42247-021-00230-5.

[45] H. Iwahara, Study on proton conductive solid electrolyte-recent trends, Electrochemistry. 69 (2001) 788–793. doi:10.5796/electrochemistry.69.788.

[46] P. Colomban, A. Novak, Proton conductors: classification and conductivity, in: Prot. Conduct., Cambridge University Press, 1992: pp. 38–60. doi:10.1017/CBO9780511524806.004.

[47] C. Duan, J. Huang, N. Sullivan, R. O’Hayre, Proton-conducting oxides for energy conversion and storage, Appl. Phys. Rev. 7 (2020) 011314. doi:10.1063/1.5135319.

[48] N. Kochetova, I. Animitsa, D. Medvedev, A. Demin, P. Tsiakaras, Recent activity in the development of proton-conducting oxides for high- temperature applications, RSC Adv. 6 (2016) 73222–73268. doi:10.1039/C6RA13347A.

[49] H. Iwahara, T. Hibino, T. Yajima, Studies on proton conducting ceramics based on perovskite-type oxides, Nippon Kagaku Kaishi. 54 (1993) 1003– 1011. doi:10.1246/nikkashi.1993.1003.

[50] M.K. Hossain, T. Iwasa, K. Hashizume, Hydrogen isotope dissolution and release behavior in Y‐doped BaCeO3, J. Am. Ceram. Soc. (2021) jace.18035. doi:10.1111/jace.18035.

[51] T. Chikada, A. Suzuki, T. Tanaka, T. Terai, T. Muroga, Microstructure control and deuterium permeability of erbium oxide coating on ferritic/martensitic steels by metal-organic decomposition, Fusion Eng. Des. 85 (2010) 1537– 1541. doi:10.1016/j.fusengdes.2010.04.033.

[52] N. Bonanos, Transport properties and conduction mechanism in high- temperature protonic conductors, Solid State Ionics. 53–56 (1992) 967–974. doi:10.1016/0167-2738(92)90278-W.

[53] H.H. Shin, S. McIntosh, On the H2/D2 isotopic exchange rate of proton conducting barium cerates and zirconates, J. Mater. Chem. A. 1 (2013) 7639. doi:10.1039/c3ta10740j.

[54] N. Bonanos, A. Huijser, F.W. Poulsen, H/D isotope effects in high temperature proton conductors, Solid State Ionics. 275 (2015) 9–13. doi:10.1016/j.ssi.2015.03.028.

[55] K.-D. Kreuer, A. Rabenau, W. Weppner, Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors, Angew. Chemie Int. Ed. English. 21 (1982) 208–209. doi:10.1002/anie.198202082.

[56] K.-D. Kreuer, Proton conductivity: Materials and applications, Chem. Mater. 8 (1996) 610–641. doi:10.1021/cm950192a.

[57] C.J.T. de Grotthuss, Memoir on the decomposition of water and of the bodies that it holds in solution by means of galvanic electricity, Biochim. Biophys. Acta - Bioenerg. 1757 (2006) 871–875. doi:10.1016/j.bbabio.2006.07.004.

[58] C.J.T. de Grotthuss, Mémoire sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique, Ann. Chim. 58 (1806) 54–74.

[59] N. Agmon, The Grotthuss mechanism, Chem. Phys. Lett. 244 (1995) 456–462. doi:10.1016/0009-2614(95)00905-J.

[60] K. Miyatake, Polymer electrolyte fuel cells: Development of electrolyte membranes, Kobunshi. 54 (2005) 866–869. doi:10.1295/kobunshi.54.866.

[61] E.C.C. de Souza, R. Muccillo, Properties and applications of perovskite proton conductors, Mater. Res. 13 (2010) 385–394. doi:10.1590/S1516-14392010000300018.

[62] Q. Li, Q. Yin, Y.-S. Zheng, Z.-J. Sui, X.-G. Zhou, D. Chen, Y.-A. Zhu, Insights into hydrogen transport behavior on perovskite surfaces: Transition from the Grotthuss mechanism to the vehicle mechanism, Langmuir. 35 (2019) 9962– 9969. doi:10.1021/acs.langmuir.8b04138.

[63] K. Bae, D.Y. Jang, H.J. Choi, D. Kim, J. Hong, B.-K. Kim, J.-H. Lee, J.-W. Son, J.H. Shim, Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells, Nat. Commun. 8 (2017) 14553. doi:10.1038/ncomms14553.

[64] S.G. Kang, D.S. Sholl, First‐principles investigation of chemical stability and proton conductivity of M‐doped BaZrO3 (M=K, Rb, and Cs), J. Am. Ceram. Soc. 100 (2017) 2997–3003. doi:10.1111/jace.14839.

[65] M. Tanaka, Y. Asakura, T. Uda, Performance of the electrochemical hydrogen pump of a proton-conducting oxide for the tritium monitor, Fusion Eng. Des. 83 (2008) 1414–1418. doi:10.1016/j.fusengdes.2008.06.038.

[66] M. Tanaka, Y. Asakura, T. Uda, K. Katahira, H. Iwahara, N. Tsuji, I. Yamamoto, Studies on hydrogen extraction characteristics of proton-conducting ceramics and their applications to a tritium recovery system and a tritium monitor, Fusion Sci. Technol. 48 (2005) 51–54. doi:10.13182/FST05-A878.

[67] M. Tanaka, T. Ohshima, Recovery of hydrogen from gas mixture by an intermediate-temperature type proton conductor, Fusion Eng. Des. 85 (2010) 1038–1043. doi:10.1016/j.fusengdes.2010.01.007.

[68] M. Tanaka, T. Sugiyama, Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide, Fusion Sci. Technol. 67 (2015) 600–603. doi:10.13182/FST14-T89.

[69] T. Xia, C. He, H. Yang, W. Zhao, L. Yang, Hydrogen extraction characteristics of high-temperature proton conductor ceramics for hydrogen isotopes purification and recovery, Fusion Eng. Des. 89 (2014) 1500–1504. doi:10.1016/j.fusengdes.2014.04.078.

[70] M. Tanaka, T. Sugiyama, T. Ohshima, I. Yamamoto, Extraction of hydrogen and tritium using high-temperature proton conductor for tritium monitoring, Fusion Sci. Technol. 60 (2011) 1391–1394. doi:10.13182/FST11-A12690.

[71] M. Tanaka, K. Katahira, Y. Asakura, T. Uda, H. Iwahara, I. Yamamoto, Hydrogen extraction using one-end closed tube made of CaZrO3-based proton-conducting ceramic for tritium recovery system, J. Nucl. Sci. Technol. 41 (2004) 61–67. doi:10.1080/18811248.2004.9715458.

[72] M. Tanaka, Y. Asakura, T. Uda, K. Katahira, N. Tsuji, H. Iwahara, Hydrogen enrichment by means of electrochemical hydrogen pump using proton- conducting ceramics for a tritium stack monitor, Fusion Eng. Des. 81 (2006) 1371–1377. doi:10.1016/j.fusengdes.2005.08.075.

[73] M. Tanaka, K. Katahira, Y. Asakura, T. Uda, H. Iwahara, I. Yamamoto, Hydrogen extraction characteristics of proton-conducting ceramics under a wet air atmosphere for a tritium stack monitor, J. Nucl. Sci. Technol. 41 (2004) 1013–1017. doi:10.1080/18811248.2004.9726325.

[74] M. Tanaka, K. Katahira, Y. Asakura, T. Uda, H. Iwahara, I. Yamamoto, Effect of plated platinum electrode on hydrogen extraction performance using CaZrO3-based proton-conducting ceramic for tritium recovery system, J. Nucl. Sci. Technol. 41 (2004) 95–97. doi:10.1080/18811248.2004.9715464.

[75] A. Satapathy, E. Sinha, B.K. Sonu, S.K. Rout, Conduction and relaxation phenomena in barium zirconate ceramic in wet N2 environment, J. Alloys Compd. 811 (2019) 152042. doi:10.1016/j.jallcom.2019.152042.

[76] J. Huang, Y. Ma, M. Cheng, S. Ruan, Fabrication of integrated BZY electrolyte matrices for protonic ceramic membrane fuel cells by tape- casting and solid-state reactive sintering, Int. J. Hydrogen Energy. 43 (2018) 12835–12846. doi:10.1016/j.ijhydene.2018.04.148.

[77] T. Kuroha, K. Yamauchi, Y. Mikami, Y. Tsuji, Y. Niina, M. Shudo, G. Sakai, N. Matsunaga, Y. Okuyama, Effect of added Ni on defect structure and proton transport properties of indium-doped barium zirconate, Int. J. Hydrogen Energy. 45 (2020) 3123–3131. doi:10.1016/j.ijhydene.2019.11.128.

[78] Z. Zhu, S. Wang, J. Shen, X. Meng, Y. Cao, Z. Wang, Z. Wei, Effect of low-level Ca2+ substitution at perovskite B site on the properties of BaZr0.8Y0.2O3-δ, J. Alloys Compd. 805 (2019) 718–724. doi:10.1016/j.jallcom.2019.07.128.

[79] H. Xie, Z. Wei, Y. Yang, H. Chen, X. Ou, B. Lin, Y. Ling, New Gd-Zn co-doping enhanced mechanical properties of BaZrO3 proton conductors with high conductivity for IT-SOFCs, Mater. Sci. Eng. B. 238–239 (2018) 76–82. doi:10.1016/j.mseb.2018.12.012.

[80] Z. Zhu, S. Wang, Investigation on samarium and yttrium co-doping barium zirconate proton conductors for protonic ceramic fuel cells, Ceram. Int. 45 (2019) 19289–19296. doi:10.1016/j.ceramint.2019.06.179.

[81] Y. Ling, H. Chen, J. Niu, F. Wang, L. Zhao, X. Ou, T. Nakamura, K. Amezawa, Bismuth and indium co-doping strategy for developing stable and efficient barium zirconate-based proton conductors for high-performance H-SOFCs, J. Eur. Ceram. Soc. 36 (2016) 3423–3431. doi:10.1016/j.jeurceramsoc.2016.05.027.

[82] H. Dai, Proton conducting solid oxide fuel cells with chemically stable BaZr0.75Y0.2Pr0.05O3-δ electrolyte, Ceram. Int. 43 (2017) 7362–7365. doi:10.1016/j.ceramint.2017.02.090.

[83] S. Ricote, B.L. Kee, W.G. Coors, Channelized substrates made from BaZr0.75Ce0.05Y0.2O3− δ proton-conducting ceramic polymer clay, Membranes (Basel). 9 (2019) 130. doi:10.3390/membranes9100130.

[84] S. Imashuku, T. Uda, Y. Nose, G. Taniguchi, Y. Ito, Y. Awakura, Dependence of dopant cations on microstructure and proton conductivity of barium zirconate, J. Electrochem. Soc. 156 (2009) B1. doi:10.1149/1.2999335.

[85] F. Iguchi, N. Sata, T. Tsurui, H. Yugami, Microstructures and grain boundary conductivity of BaZr1−xYxO3 (x=0.05, 0.10, 0.15) ceramics, Solid State Ionics. 178 (2007) 691–695. doi:10.1016/j.ssi.2007.02.019.

[86] E. Fabbri, D. Pergolesi, S. Licoccia, E. Traversa, Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1−xYxO3−δ fuel cell electrolytes?, Solid State Ionics. 181 (2010) 1043–1051. doi:10.1016/j.ssi.2010.06.007.

[87] Y. Yamazaki, Role of yttrium substitution and barium deficiency in proton- conducting barium zirconates, Mater. Japan. 54 (2015) 343–346. doi:10.2320/materia.54.343.

[88] N.S. Patki, A. Manerbino, J.D. Way, S. Ricote, Galvanic hydrogen pumping performance of copper electrodes fabricated by electroless plating on a BaZr0.9-xCeY0.1O3-δ proton-conducting ceramic membrane, Solid State Ionics. 317 (2018) 256–262. doi:10.1016/j.ssi.2018.01.031.

[89] S. Robinson, A. Manerbino, W. Grover Coors, Galvanic hydrogen pumping in the protonic ceramic perovskite, J. Memb. Sci. 446 (2013) 99–105. doi:10.1016/j.memsci.2013.06.026.

[90] J. Choi, M. Shin, B. Kim, J.-S. Park, High-performance ceramic composite electrodes for electrochemical hydrogen pump using protonic ceramics, Int. J. Hydrogen Energy. 42 (2017) 13092–13098. doi:10.1016/j.ijhydene.2017.04.061.

[91] T. Schneller, T. Schober, Chemical solution deposition prepared dense proton conducting Y-doped BaZrO3 thin films for SOFC and sensor devices, Solid State Ionics. 164 (2003) 131–136. doi:10.1016/S0167-2738(03)00308-4.

[92] S.W. Tao, J.T.S. Irvine, A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers, Adv. Mater. 18 (2006) 1581–1584. doi:10.1002/adma.200502098.

[93] P. Babilo, S.M. Haile, Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO, J. Am. Ceram. Soc. 88 (2005) 2362–2368. doi:10.1111/j.1551-2916.2005.00449.x.

[94] M.K. Hossain, T. Yamamoto, K. Hashizume, Effect of sintering conditions on structural and morphological properties of Y- and Co-doped BaZrO3 proton conductors, Ceram. Int. (2021). doi:10.1016/j.ceramint.2021.06.138.

[95] Z. Xie, H. Zhao, Z. Du, T. Chen, N. Chen, X. Liu, S.J. Skinner, Effects of Co doping on the electrochemical performance of double perovskite oxide Sr2MgMoO6−δ as an anode material for solid oxide fuel cells, J. Phys. Chem. C. 116 (2012) 9734–9743. doi:10.1021/jp212505c.

[96] X. Li, H. Zhao, N. Xu, X. Zhou, C. Zhang, N. Chen, Electrical conduction behavior of La, Co co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells, Int. J. Hydrogen Energy. 34 (2009) 6407–6414. doi:10.1016/j.ijhydene.2009.05.079.

[97] J. Zhang, Z. Wen, X. Chi, J. Han, X. Wu, T. Wen, Proton conducting CaZr0.9In0.1O3-δ ceramic membrane prepared by tape casting, Solid State Ionics. 225 (2012) 291–296. doi:10.1016/j.ssi.2012.03.040.

[98] H. Matsumoto, K. Takeuchi, H. Iwahara, Electromotive force of hydrogen isotope cell with a high temperature proton‐conducting solid electrolyte CaZr0.90In0.10O3−α, J. Electrochem. Soc. 146 (2019) 1486–1491. doi:10.1149/1.1391791.

[99] N. Kurita, N. Fukatsu, K. Ito, T. Ohashi, Protonic conduction domain of indium‐ doped calcium zirconate, J. Electrochem. Soc. 142 (2019) 1552–1559. doi:10.1149/1.2048611.

[100] T. Hibino, K. Mizutani, T. Yajima, H. Iwahara, Evaluation of proton conductivity in SrCeO3, BaCeO3, CaZrO3 and SrZrO3 by temperature programmed desorption method, Solid State Ionics. 57 (1992) 303–306. doi:10.1016/0167-2738(92)90162-I.

[101] T. Yajima, H. Kazeoka, T. Yogo, H. Iwahara, Proton conduction in sintered oxides based on CaZrO3, Solid State Ionics. 47 (1991) 271–275. doi:10.1016/0167-2738(91)90249-B.

[102] C. Wang, X. Xu, H. Yu, Y. Wen, K. Zhao, A study of the solid electrolyte Y2O3- doped CaZrO3, Solid State Ionics. 28–30 (1988) 542–545. doi:10.1016/S0167-2738(88)80099-7.

[103] T. Hibino, H. Iwahara, A hydrocarbon sensor using a high temperature-type proton conductor, J. Appl. Electrochem. 24 (1994). doi:10.1007/BF00242895.

[104] T. Yajima, H. Iwahara, N. Fukatsu, T. Ohashi, K. Koide, Measurement of hydrogen content in molten aluminum using proton conducting ceramic sensor., J. Japan Inst. Light Met. 42 (1992) 263–267. doi:10.2464/jilm.42.263.

[105] M.K. Hossain, K. Hashizume, S. Jo, K. Kawaguchi, Y. Hatano, Hydrogen isotope dissolution and release behavior of rare earth oxides, Fusion Sci. Technol. 76 (2020) 553–566. doi:10.1080/15361055.2020.1728173.

[106] M.K. Hossain, M.I. Khan, A. El-Denglawey, A review on biomedical applications, prospects, and challenges of rare earth oxides, Appl. Mater. Today. 24 (2021) 101104. doi:10.1016/j.apmt.2021.101104.

[107] M.K. Hossain, K. Kawaguchi, K. Hashizume, Isotopic effect of proton conductivity in gadolinium sesquioxide, Fusion Eng. Des. 171 (2021) 112555. doi:10.1016/j.fusengdes.2021.112555.

[108] L. Eyring, Chapter 27 The binary rare earth oxides, in: K.A. Gschneidner, J. and L. Eyring (Eds.), Handb. Phys. Chem. Rare Earths, North-Holland Publishing Company, Amsterdam, Netherlands, 1979: pp. 337–399. doi:10.1016/S0168-1273(79)03010-5.

[109] L. Eyring, B. Holmberg, Ordered phases and nonstoichiometry in the rare earth oxide system, in: 1963: pp. 46–57. doi:10.1021/ba-1964-0039.ch004.

[110] R.D. Shannon, M.A. Subramanian, T.H. Allik, H. Kimura, M.R. Kokta, M.H. Randles, G.R. Rossman, Dielectric constants of yttrium and rare‐earth garnets, the polarizability of gallium oxide, and the oxide additivity rule, J. Appl. Phys. 67 (1990) 3798–3802. doi:10.1063/1.345026.

[111] S. Sato, R. Takahashi, M. Kobune, H. Gotoh, Basic properties of rare earth oxides, Appl. Catal. A Gen. 356 (2009) 57–63. doi:10.1016/j.apcata.2008.12.019.

[112] K. Hashizume, Y. Oki, Using a tritium imaging plate technique to measure the hydrogen solubility and diffusivity of Zr-doped BaInO2.5, Fusion Sci. Technol. 71 (2017) 344–350. doi:10.1080/15361055.2017.1291036.

[113] K. Yamashita, T. Otsuka, K. Hashizume, Hydrogen solubility and diffusivity in a barium cerate protonic conductor using tritium imaging plate technique, Solid State Ionics. 275 (2015) 43–46. doi:10.1016/j.ssi.2015.02.008.

[114] K. Hashizume, K. Ogata, M. Nishikawa, T. Tanabe, S. Abe, S. Akamaru, Y. Hatano, Study on kinetics of hydrogen dissolution and hydrogen solubility in oxides using imaging plate technique, J. Nucl. Mater. 442 (2013) S880–S884. doi:10.1016/j.jnucmat.2013.05.038.

[115] I. Bonnett, A. Busigin, A. Shapiro, Tritium removal and separation technology developments, Fusion Sci. Technol. 54 (2008) 209–214. doi:10.13182/FST08- A1797.

[116] T. Sugiyama, Y. Asakura, T. Uda, Y. Abe, T. Shiozaki, Y. Enokida, I. Yamamoto, Preliminary experiments on hydrogen isotope separation by water- hydrogen chemical exchange under reduced pressure, J. Nucl. Sci. Technol. 41 (2004) 696–701. doi:10.1080/18811248.2004.9715535.

[117] M. Nishikawa, M. Enoeda, K. Kotoh, K. Kog, Enrichment and volume reduction of tritiated water using electrolysis cell having hydrogen permeable cathode, J. Nucl. Sci. Technol. 23 (1986) 905–913. doi:10.1080/18811248.1986.9735074.

[118] Y. Kawamura, K. Isobe, T. Yamanishi, Mass transfer process of hydrogen via ceramic proton conductor membrane of electrochemical hydrogen pump, Fusion Eng. Des. 82 (2007) 113–121. doi:10.1016/j.fusengdes.2006.07.094.

[119] M. Lozada-Hidalgo, S. Hu, O. Marshall, A. Mishchenko, A.N. Grigorenko, R.A.W. Dryfe, B. Radha, I. V. Grigorieva, A.K. Geim, Sieving hydrogen isotopes through two-dimensional crystals, Science (80-. ). 351 (2016) 68–70. doi:10.1126/science.aac9726.

[120] F.T. Aldridge, Gas chromatographic separation of hydrogen isotopes using metal hydrides, J. Less Common Met. 108 (1985) 131–150. doi:10.1016/0022- 5088(85)90438-2.

[121] R. Smith, D.A.J. Whittaker, B. Butler, A. Hollingsworth, R.E. Lawless, X. Lefebvre, S.A. Medley, A.I. Parracho, B. Wakeling, Hydrogen isotope separation for fusion power applications, J. Alloys Compd. 645 (2015) S51–S55. doi:10.1016/j.jallcom.2015.01.231.

[122] H. Iwahara, Prospect of hydrogen technology using proton-conducting ceramics, Solid State Ionics. 168 (2004) 299–310. doi:10.1016/j.ssi.2003.03.001.

[123] Y. Asakura, T. Sugiyama, T. Kawano, T. Uda, M. Tanaka, N. Tsuji, K. Katahira, H. Iwahara, Application of proton-conducting ceramics and polymer permeable membranes for gaseous tritium recovery, J. Nucl. Sci. Technol. 41 (2004) 863–870. doi:10.1080/18811248.2004.9715558.

[124] H. Matsumoto, H. Hayashi, H. Iwahara, Electrochemical hydrogen isotope sensor based on solid electrolytes, J. Nucl. Sci. Technol. 39 (2002) 367–370. doi:10.1080/18811248.2002.9715205.

[125] S. Hamakawa, T. Hibino, H. Iwahara, Electrochemical hydrogen permeation in a proton‐hole mixed conductor and its application to a membrane reactor, J. Electrochem. Soc. 141 (2019) 1720–1725. doi:10.1149/1.2054993.

[126] T. Hibino, K. Mizutani, H. Iwahara, H/D isotope effect on electrochemical pumps of hydrogen and water vapor using a proton‐conductive solid electrolyte, J. Electrochem. Soc. 140 (2019) 2588–2592. doi:10.1149/1.2220867.

[127] K. Takahashi, S. Tasaki, K. Neriishi, M. Etoh, Development of “BAS-ND” imaging plate for neutron detection, Fujifilm Res. Dev. 44 (1999) 41.

[128] M. Higaki, T. Otsuka, K. Tokunaga, K. Hashizume, K. Ezato, S. Suzuki, M. Enoeda, M. Akiba, Determination of hydrogen diffusion coefficients in F82H by hydrogen depth profiling with a tritium imaging plate technique, Fusion Sci. Technol. 67 (2015) 379–381. doi:10.13182/FST14-T33.

[129] M.K. Hossain, H. Tamura, K. Hashizume, Visualization of hydrogen isotope distribution in yttrium and cobalt doped barium zirconates, J. Nucl. Mater. 538 (2020) 152207. doi:10.1016/j.jnucmat.2020.152207.

[130] Y. Yamauchi, Y. Hirohata, T. Hino, Deuterium retention and desorption behavior in oxidized ferritic steel, J. Nucl. Mater. 363–365 (2007) 984–988. doi:10.1016/j.jnucmat.2007.01.136.

[131] F.J. Castro, G. Meyer, Thermal desorption spectroscopy (TDS) method for hydrogen desorption characterization (I): Theoretical aspects, J. Alloys Compd. 330–332 (2002) 59–63. doi:10.1016/S0925-8388(01)01625-5.

[132] B.J. Merrill, TMAP4 tritium migration analysis program code, description and user’s manual, INEL report, EG&GIdaho, Inc., EGG-FSP-10315, n.d.

[133] T. Venhaus, R. Causey, R. Doerner, T. Abeln, Behavior of tungsten exposed to high fluences of low energy hydrogen isotopes, J. Nucl. Mater. 290–293 (2001) 505–508. doi:10.1016/S0022-3115(00)00443-8.

[134] M.K. Hossain, K. Hashizume, Preparation and characterization of yttrium doped barium-zirconates at high temperature sintering, in: Proceeding Int. Exch. Innov. Conf. Eng. Sci., IGSES, Kyushu University, Fukuoka, Japan, 2019: pp. 70–72. doi:10.15017/2552940.

[135] M. Khalid Hossain, K. Hashizume, Dissolution and release behavior of hydrogen isotopes from barium-zirconates, Proc. Int. Exch. Innov. Conf. Eng. Sci. 6 (2020) 34–39. doi:10.5109/4102460.

[136] M.K. Hossain, K. Kawaguchi, K. Hashizume, Conductivity of gadolinium (III) oxide (Gd2O3) in hydrogen-containing atmospheres, Proc. Int. Exch. Innov. Conf. Eng. Sci. 6 (2020) 1–6. doi:10.5109/4102455.

[137] J.-C. Lee, S.-H. Ahn, Bulk density measurement of porous functionally graded materials, Int. J. Precis. Eng. Manuf. 19 (2018) 31–37. doi:10.1007/s12541-018- 0004-4.

[138] Y. Iwabuchi, N. Mori, K. Takahashi, T. Matsuda, S. Shionoya, Mechanism of Photostimulated Luminescence Process in BaFBr:Eu2+ Phosphors, Jpn. J. Appl. Phys. 33 (1994) 178–185. doi:10.1143/JJAP.33.178.

[139] J.A. Gledhill, The range-energy relation for 0.1-600 keV electrons, J. Phys. A Math. Nucl. Gen. 6 (1973) 1420–1428. doi:10.1088/0305-4470/6/9/017.

[140] D.S. Wilkinson, Mass transport in solids and fluids, First Edit, Cambridge University Press, Cambridge, UK, 2000. doi:10.1017/CBO9781139171267.

[141] S. Maher, S.U. Syed, D.M. Hughes, J.R. Gibson, S. Taylor, Mapping the stability diagram of a quadrupole mass spectrometer with a static transverse magnetic field applied, J. Am. Soc. Mass Spectrom. 24 (2013) 1307–1314. doi:10.1007/s13361-013-0654-5.

[142] F.A. Mellon, MASS SPECTROMETRY | Principles and Instrumentation, in: Encycl. Food Sci. Nutr., Elsevier, 2003: pp. 3739–3749. doi:10.1016/B0-12- 227055-X/00746-X.

[143] M. Henchman, C. Steel, Understanding the Quadrupole Mass Filter through Computer Simulation, J. Chem. Educ. 75 (1998) 1049. doi:10.1021/ed075p1049.

[144] J.H. Leck, Total and partial pressure measurement in vacuum systems, Springer US, Boston, MA, USA, 1988. doi:10.1007/978-1-4613-0877-5.

[145] P. Shewmon, Diffusion in solids, McGraw-Hill, New York, 1976.

[146] T. Otsuka, Y. Ogawa, H. Horinouchi, K. Hashizume, Release behavior of tritium in pure copper and its alloys into pure water at ambient temperature, Fusion Eng. Des. 113 (2016) 227–230. doi:10.1016/j.fusengdes.2016.08.030.

[147] Fujifilm, Image format description BAS2500 system, Ver 1.0, Fuji Photo Film Co. Ltd., Tokyo, Japan, 2003.

[148] Fujifilm, Multi Gauge -Ver2.0- Operational Manual, Edition 1., Science Lab 2002, 2002.

[149] Y. Yamazaki, P. Babilo, S.M. Haile, Defect chemistry of yttrium-doped barium zirconate: A thermodynamic analysis of water uptake, Chem. Mater. 20 (2008) 6352–6357. doi:10.1021/cm800843s.

[150] T. Norby, M. Widerøe, R. Glöckner, Y. Larring, Hydrogen in oxides, Dalt. Trans. (2004) 3012–3018. doi:10.1039/B403011G.

[151] K.D. Kreuer, Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides, Solid State Ionics. 125 (1999) 285–302. doi:10.1016/S0167-2738(99)00188-5.

[152] T. Schober, Water vapor solubility and electrochemical characterization of the high temperature proton conductor BaZr0.9Y0.1O2.95, Solid State Ionics. 127 (2000) 351–360. doi:10.1016/S0167-2738(99)00283-0.

[153] R. Slade, Investigation of protonic conduction in Yb- and Y-doped barium zirconates, Solid State Ionics. 82 (1995) 135–141. doi:10.1016/0167-2738(95)00212-8.

[154] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A. 32 (1976) 751–767. doi:10.1107/S0567739476001551.

[155] H. Bae, J. Choi, K.J. Kim, D. Park, G.M. Choi, Low-temperature fabrication of protonic ceramic fuel cells with BaZr0.8Y0.2O3−δ electrolytes coated by aerosol deposition method, Int. J. Hydrogen Energy. 40 (2015) 2775–2784. doi:10.1016/j.ijhydene.2014.12.046.

[156] Y. Liu, Y. Guo, R. Ran, Z. Shao, A new neodymium-doped BaZr0.8Y0.2O3−δ as potential electrolyte for proton-conducting solid oxide fuel cells, J. Memb. Sci. 415–416 (2012) 391–398. doi:10.1016/j.memsci.2012.05.062.

[157] H. Bae, G.M. Choi, Novel modification of anode microstructure for proton- conducting solid oxide fuel cells with BaZr0.8Y0.2O3−δ electrolytes, J. Power Sources. 285 (2015) 431–438. doi:10.1016/j.jpowsour.2015.03.090.

[158] K.T. Lee, A. Manthiram, Effect of cation doping on the physical properties and electrochemical performance of Nd0.6Sr0.4Co0.8M0.2O3−δ (M=Ti, Cr, Mn, Fe, Co, and Cu) cathodes, Solid State Ionics. 178 (2007) 995–1000. doi:10.1016/j.ssi.2007.04.010.

[159] N. Hideshima, K. Hashizume, Effect of partial substitution of In by Zr, Ti and Hf on protonic conductivity of BaInO2.5, Solid State Ionics. 181 (2010) 1659–1664. doi:10.1016/j.ssi.2010.09.029.

[160] H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, H. Suzuki, Protonic conduction in calcium, strontium and barium zirconates, Solid State Ionics. 61 (1993) 65–69. doi:10.1016/0167-2738(93)90335-Z.

[161] W. Münch, Proton diffusion in perovskites: comparison between BaCeO3, BaZrO3, SrTiO3, and CaTiO3 using quantum molecular dynamics, Solid State Ionics. 136–137 (2000) 183–189. doi:10.1016/S0167-2738(00)00304-0.

[162] P. Raiteri, J.D. Gale, G. Bussi, Reactive force field simulation of proton diffusion in BaZrO3 using an empirical valence bond approach, J. Phys. Condens. Matter. 23 (2011) 334213. doi:10.1088/0953-8984/23/33/334213.

[163] M.K. Hossain, K. Hashizume, Y. Hatano, Evaluation of the hydrogen solubility and diffusivity in proton-conducting oxides by converting the PSL values of a tritium imaging plate, Nucl. Mater. Energy. 25 (2020) 100875. doi:10.1016/j.nme.2020.100875.

[164] A. Braun, S. Duval, P. Ried, J. Embs, F. Juranyi, T. Strässle, U. Stimming, R. Hempelmann, P. Holtappels, T. Graule, Proton diffusivity in the BaZr0.9Y0.1O3−δ proton conductor, J. Appl. Electrochem. 39 (2009) 471–475. doi:10.1007/s10800-008-9667-3.

[165] T. Scherban, Y. Baikov, E. Shalkova, H+/D+ isotope effect in Y-doped BaCeO3 crystals, Solid State Ionics. 66 (1993) 159–164. doi:10.1016/0167-2738(93)90039-6.

[166] T. Hibino, H. Iwahara, The hydrogen isotope separation by the steam electrolysis using the high temperature-type protonic conductor, Nippon Kagaku Kaishi. (1994) 518–523. doi:10.1246/nikkashi.1994.518.

[167] M. Zinkevich, Thermodynamics of rare earth sesquioxides, Prog. Mater. Sci. 52 (2007) 597–647. doi:10.1016/j.pmatsci.2006.09.002.

[168] Y. Okuyama, S. Nagamine, A. Nakajima, G. Sakai, N. Matsunaga, F. Takahashi, K. Kimata, T. Oshima, K. Tsuneyoshi, Proton-conducting oxide with redox protonation and its application to a hydrogen sensor with a self- standard electrode, RSC Adv. 6 (2016) 34019–34026. doi:10.1039/C5RA23560J.

[169] K.D. Kreuer, T. Dippel, N.G. Hainovsky, J. Maier, Proton conductivity: Compounds and their structural and chemical peculiarities, Berichte Der Bunsengesellschaft Für Phys. Chemie. 96 (1992) 1736–1742. doi:10.1002/bbpc.19920961143.

[170] D.-W. Lim, M. Sadakiyo, H. Kitagawa, Proton transfer in hydrogen-bonded degenerate systems of water and ammonia in metal–organic frameworks, Chem. Sci. 10 (2019) 16–33. doi:10.1039/C8SC04475A.

[171] W. Lee, A. Nowick, L. Boatner, Protonic conduction in acceptor-doped KTaO3 crystals, Solid State Ionics. 18–19 (1986) 989–993. doi:10.1016/0167-2738(86)90297-3.

[172] A.S. Nowick, A. V Vaysleyb, Isotope effect and proton hopping in high- temperature protonic conductors, Solid State Ionics. 97 (1997) 17–26. doi:10.1016/S0167-2738(97)00081-7.

[173] T. Norbya, Proton conduction in oxides, Solid State Ionics. 40–41 (1990) 857–862. doi:10.1016/0167-2738(90)90138-H.

[174] J. Liu, A. Nowick, The incorporation and migration of protons in Nd-doped BaCeO3, Solid State Ionics. 50 (1992) 131–138. doi:10.1016/0167- 2738(92)90045-Q.

[175] T. Hibino, Characterization of proton in Y-doped SrZrO3 polycrystal by IR spectroscopy, Solid State Ionics. 58 (1992) 85–88. doi:10.1016/0167- 2738(92)90014-G.

[176] Y. Fukai, The metal-hydrogen system, Springer, Berlin, Heidelberg, Germany, 2005. doi:10.1007/3-540-28883-X.

[177] Y. Yamazaki, F. Blanc, Y. Okuyama, L. Buannic, J.C. Lucio-Vega, C.P. Grey, S.M. Haile, Proton trapping in yttrium-doped barium zirconate, Nat. Mater. 12 (2013) 647–651. doi:10.1038/nmat3638.

[178] Y. Yamazaki, Proton trapping: A key to reduce solid oxide fuel cells operation temperature, Mater. Japan. 54 (2015) 242–249. doi:10.2320/materia.54.242.

[179] G.V.S. Rao, S. Ramdas, P.N. Mehrotra, C.N.R. Rao, Electrical transport in rare- earth oxides, in: J. Solid State Chem., 1995: pp. 347–354. doi:10.1142/9789812795892_0028.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る