リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Role of Tet2-deficient immune cells in lung cancer - a model of clonal hematopoiesis-derived immune cells in solid cancers」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Role of Tet2-deficient immune cells in lung cancer - a model of clonal hematopoiesis-derived immune cells in solid cancers

NGUYEN THI MINH YEN 筑波大学 DOI:10.15068/0002005644

2022.11.24

概要

In hematopoietic system most of mature blood cells are generated from hematopoietic stem cells and contribute to innate and adaptive responses1. Somatic mutations occur during the cell division processes 1 . The status in which hematopoietic cells harboring these somatic mutations are expanded is called as “clonal hematopoiesis” (CH) 1, 2, 3 (Fig. 1). In aging, the hematopoietic system undergoes gradual replacement via “CH”, in which hematopoietic stem/progenitor cells (HSCs/HSPCs) acquire somatic mutations, clonally expand, and continuously differentiate into various lineages of blood cells harboring those mutations 2, 3. In healthy individuals, the frequency of clonal hematopoiesis gradually increases with age, and is reportedly ~10% in the 60s, 20% in the 70s, and 30% in the 80s 2, 3, 4 .

参考文献

1. Silver, A.J., Bick, A.G. & Savona, M.R. Germline risk of clonal haematopoiesis. Nat Rev Genet 22, 603-617 (2021).

2. Jaiswal, S. et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N Engl J Med (2014).

3. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371, 2477-2487 (2014).

4. Saiki, R. et al. Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis. Nat Med 27, 1239-1249 (2021).

5. Bejarano, L., Jordāo, M.J.C. & Joyce, J.A. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov 11, 933-959 (2021).

6. Gabrilovich, D.I. Myeloid-Derived Suppressor Cells. Cancer Immunol Res 5, 3-8 (2017).

7. Coombs, C.C. et al. Therapy-Related Clonal Hematopoiesis in Patients with Nonhematologic Cancers Is Common and Associated with Adverse Clinical Outcomes. Cell Stem Cell 21, 374-382.e374 (2017).

8. Park, S.J. & Bejar, R. Clonal hematopoiesis in cancer. Exp Hematol 83, 105-112 (2020).

9. Nguyen, T.B. et al. Identification of cell-type-specific mutations in nodal T-cell lymphomas. Blood Cancer J 7, e516 (2017).

10. Pan, W. et al. The DNA Methylcytosine Dioxygenase Tet2 Sustains Immunosuppressive Function of Tumor-Infiltrating Myeloid Cells to Promote Melanoma Progression. Immunity 47, 284-297.e285 (2017).

11. Li, S. et al. TET2 promotes anti-tumor immunity by governing G-MDSCs and CD8. EMBO Rep 21, e49425 (2020).

12. Jiang, S. Tet2 at the interface between cancer and immunity. Commun Biol 3, 667 (2020).

13. Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25-38 (2011).

14. Fuster, J.J. et al. TET2-Loss-of-Function-Driven Clonal Hematopoiesis Exacerbates Experimental Insulin Resistance in Aging and Obesity. Cell Rep 33, 108326 (2020).

15. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427-1429 (1995).

16. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating singlecell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36, 411-420 (2018).

17. Tomonobu, N., Kinoshita, R. & Sakaguchi, M. S100 Soil Sensor Receptors and Molecular Targeting Therapy Against Them in Cancer Metastasis. Transl Oncol 13, 100753 (2020).

18. Pruenster, M., Vogl, T., Roth, J. & Sperandio, M. S100A8/A9: From basic science to clinical application. Pharmacol Ther 167, 120-131 (2016).

19. Bullock, B.L. et al. Tumor-intrinsic response to IFNγ shapes the tumor microenvironment and anti-PD-1 response in NSCLC. Life Sci Alliance 2 (2019).

20. Chiba, S. & Sakata-Yanagimoto, M. Advances in understanding of angioimmunoblastic T-cell lymphoma. Leukemia 34, 2592-2606 (2020).

21. Ferrone, C.K., Blydt-Hansen, M. & Rauh, M.J. Age-Associated. Int J Mol Sci 21 (2020).

22. Wang, S., Song, R., Wang, Z., Jing, Z. & Ma, J. S100A8/A9 in Inflammation. Front Immunol 9, 1298 (2018).

23. Simard, J.C. et al. S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-κB(1.). PLoS One 8, e72138 (2013).

24. Song, R. & Struhl, K. S100A8/S100A9 cytokine acts as a transcriptional coactivator during breast cellular transformation. Sci Adv 7 (2021).

25. Yan, H. et al. Ten-eleven translocation methyl-cytosine dioxygenase 2 deficiency exacerbates renal ischemia-reperfusion injury. Clin Epigenetics 12, 98 (2020).

26. Pardali, E., Dimmeler, S., Zeiher, A.M. & Rieger, M.A. Clonal hematopoiesis, aging, and cardiovascular diseases. Exp Hematol 83, 95-104 (2020).

27. Kwon, C.H., Moon, H.J., Park, H.J., Choi, J.H. & Park, D.Y. S100A8 and S100A9 promotes invasion and migration through p38 mitogen-activated protein kinasedependent NF-κB activation in gastric cancer cells. Mol Cells 35, 226-234 (2013).

28. Ichikawa, M., Williams, R., Wang, L., Vogl, T. & Srikrishna, G. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res 9, 133-148 (2011).

29. Bresnick, A.R., Weber, D.J. & Zimmer, D.B. S100 proteins in cancer. Nat Rev Cancer 15, 96-109 (2015). 30. Hibino, T. et al. S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis. Cancer Res 73, 172-183 (2013).

31. Guo, H., Zucker, S., Gordon, M.K., Toole, B.P. & Biswas, C. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J Biol Chem 272, 24-27 (1997).

32. Tang, Y. et al. Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases. Cancer Res 65, 3193-3199 (2005).

33. Ridker, P.M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833-1842 (2017).

34. Ridker, P.M. et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med 377, 1119-1131 (2017).

35. Jaiswal, S. et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med 377, 111-121 (2017).

36. Fuster, J.J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842-847 (2017).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る