リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Enhanced Exciton–Exciton Collisions in an Ultraflat Monolayer MoSe2 Prepared through Deterministic Flattening」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Enhanced Exciton–Exciton Collisions in an Ultraflat Monolayer MoSe2 Prepared through Deterministic Flattening

Hotta, Takato Ueda, Akihiko Higuchi, Shohei Okada, Mitsuhiro Shimizu, Tetsuo Kubo, Toshitaka Ueno, Keiji Taniguchi, Takashi Watanabe, Kenji Kitaura, Ryo 名古屋大学

2021.01.26

概要

Squeezing bubbles and impurities out of interlayer spaces by applying force through a few-layer graphene capping layer leads to van der Waals heterostructures with the ultraflat structure free from random electrostatic potential arising from charged impurities. Without the graphene capping layer, a squeezing process with an AFM tip induces applied-force-dependent charges of Δn ∼ 2 × 10^12 cm^–2 μN^–1, resulting in the significant intensity of trions in photoluminescence spectra of MoSe2 at low temperature. We found that a hBN/MoSe2/hBN prepared with the “graphene-capping-assisted AFM nano-squeezing method” shows a strong excitonic emission with negligible trion peak, and the residual line width of the exciton peak is only 2.2 meV, which is comparable to the homogeneous limit. Furthermore, in this high-quality sample, we found that the formation of biexciton occurs even at extremely low excitation power (Φph ∼ 2.3 × 10^19 cm^–2 s^–1) due to the enhanced collisions between excitons.

この論文で使われている画像

参考文献

(1) Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

(2) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699— 712.

(3) Mak, K. F.; Shan, J. Photonics and Optoelectronics of 2D Semiconductor Transition Metal Dichalcogenides. Nat. Photonics 2016, 10, 216—226.

(4) Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-Like Two-Dimensional Materials. Chem. Rev. 2013, 113, 3766—3798.

(5) Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D Materials. Nat. Rev. Mater. 2016, 1, 16055.

(6) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

(7) Han, B.; Robert, C.; Courtade, E.; Manca, M.; Shree, S.; Amand, T.; Renucci, P.; Taniguchi, T.; Watanabe, K.; Marie, X.; Golub, L. E.; Glazov, M. M.; Urbaszek, B. Exciton States in Monolayer MoSe2 and MoTe2 Probed by Upconversion Spectroscopy. Phys. Rev. X 2018, 8, 031073 .

(8) Morozov, Y. V.; Kuno, M. Optical Constants and Dynamic Conductivities of Single Layer MoS2, MoSe2, and WSe2. Appl. Phys. Lett. 2015, 107, 083103.

(9) Raja, A.; Chaves, A.; Yu, J.; Arefe, G.; Hill, H. M.; Rigosi, A. F.; Berkelbach, T. C.; Nagler, P.; Schuller, C.; Korn, T.; Nuckolls, C.; Hone, J.; Brus, L. E.; Heinz, T. F.; Reichman, D. R.; Chernikov, A. Coulomb Engineering of the Bandgap and Excitons in Two-Dimensional Materials. Nat. Commun. 2017, 8, 15251.

(10) Bawden, L.; Cooil, S. P.; Mazzola, F.; Riley, J. M.; Collins-McIntyre, L. J.; Sunko, V.; Hunvik, K. W. B.; Leandersson, M.; Polley, C. M.; Balasubramanian, T.; Kim, T. K.; Hoesch, M.; Wells, J. W.; Balakrishnan, G.; Bahramy, M. S.; King, P. D. C. Spin-Valley Locking in the Normal State of a Transition- Metal Dichalcogenide Superconductor. Nat. Commun. 2016, 7, 11711.

(11) Li, A. J.; Zhu, X. C.; Rhodes, D.; Samouce, C. C.; Balicas, L.; Hebard, A. F. van der Waals Schottky Barriers as Interface Probes of the Correlation between Chemical Potential Shifts and Charge Density Wave Formation in 1T-TiSe2 and 2H-NbSe2. Phys. Rev. B 2017, 96, 125301.

(12) Miao, G. Y.; Xue, S. W.; Li, B.; Lin, Z. J.; Liu, B.; Zhu, X. T.; Wang, W. H.; Guo, J. D. Real-Space Investigation of the Charge Density Wave in VTe2 Monolayer with Broken Rotational and Mirror Symmetries. Phys. Rev. B 2020, 101, 035407.

(13) Sayers, C. J.; Farrar, L. S.; Bending, S. J.; Cattelan, M.; Jones, A. J. H.; Fox, N. A.; Kociok-Kohn, G.; Koshmak, K.; Laverock, J.; Pasquali, L.; Da Como, E. Correlation between Crystal Purity and the Charge Density Wave in 1T-VSe2. Phys. Rev. Mater. 2020, 4, 025002.

(14) Onga, M.; Zhang, Y. J.; Ideue, T.; Iwasa Y. Exciton Hall Effect in Monolayer MoS2. Nat. Mater. 2017, 16, 1193—1197.

(15) Tang, Y. H.; Mak, K. F.; Shan, J. Long Valley Lifetime of Dark Excitons in Single-Layer WSe2. Nat. Commun. 2019, 10, 4047.

(16) Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

(17) Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and Pseudospins in Layered Transition Metal Dichalcogenides. Nat. Phys. 2014, 10, 343—350.

(18) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Singel-Layer MoS2 Transistors. Nat. Nanotech. 2011, 6, 147—150.

(19) Das, S.; Appenzeller, J. WSe2 Field Effect Transistors with Enhanced Ambipolar Characteristics. Appl. Phys. Lett. 2013, 103, 103501.

(20) Kanazawa, T.; Amemiya, T.; Ishikawa, A.; Upadhyaya, V.; Tsuruta, K.; Tanaka, T.; Miyamoto, Y. Few-Layer HfS2 Transistors. Sci. Rep. 2016, 6, 22277.

(21) Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M.; Wong, H. S. P.; Javey, A. MoS2 Transistors with 1-Nanometer Gate Lengths. Science 2016, 354, 99—102.

(22) Lee, G. H.; Cui, X.; Kim, Y. D.; Arefe, G.; Zhang, X.; Lee, C. H.; Ye, F.; Watanabe, K.; Taniguchi, T.; Kim, P.; Hone, J. Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage. ACS Nano 2015, 9, 7019— 7026.

(23) Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic Devices Based on Electrically Tunable p-n Diodes in a Monolayer Dichalcogenide. Nat. Nanotechnol. 2014, 9, 262—267.

(24) Ajayi, O. A.; Ardelean, J. V.; Shepard, G. D.; Wang, J.; Antony, A.; Taniguchi, T.; Watanabe, K.; Heinz, T. F.; Strauf, S.; Zhu, X. Y.; Hone, J. C. Approaching the Intrinsic Photoluminescence Linewidth in Transition Metal Dichalcogenide Monolayers. 2D Mater. 2017, 4, 031011.

(25) Cadiz, F.; Courtade, E.; Robert, C.; Wang, G.; Shen, Y.; Cai, H.; Taniguchi, T.; Watanabe, K.; Carrere, H.; Lagarde, D.; Manca, M.; Amand, T.; Renucci, P.; Tognay, S.; Marie, X.; Urbaszek, B. Excitonic Linewidth Approaching the Homogeneous Limit in MoS2-Based van der Waals Heterostructures. Phys. Rev. X 2017, 7, 021026.

(26) Chen, J. H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2. Nat. Nanotech. 2008, 3, 206—209.

(27) Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene. Nature 2005, 438, 201—204.

(28) Hwang, E. H.; Das Sarma, S. Acoustic Phonon Scattering Limited Carrier Mobility in Two- Dimensional Extrinsic Graphene. Phys. Rev. B 2008, 77, 115449.

(29) Cassabois, G.; Valvin, P.; Gil, B. Hexagonal Boron Nitride is an Indirect Bandgap Semiconductor. Nat. Photonics 2016, 10, 262.

(30) Cui, X.; Lee, G.-H.; Kim, Y. D.; Arefe, G.; Huang, P. H.; Lee, C.-H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F.; Pizzocchero, F.; Jessen, B. S.; Watanabe, K.; Taniguchi, T.; Muller, D. A.; Low, T.; Kim, P.; Hone, J. Multi-Terminal Transport Measurements of MoS2 Using a van der Waals Heterostructure Device Platform. Nat. Nanotech. 2015, 10, 534—540.

(31) Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of Moire-Trapped Valley Excitons in MoSe2/WSe2 Heterobilayers. Nature 2019, 567, 66.

(32) Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A.; Embley, J.; Zepeda, A.; Campbell, M.; Autry, T.; Taniguchi, T.; Watanabe, K.; Lu, N.; Banerjee, S. K.; Silveman, K. L.; Kim, S.; et al. Evidence for Moire Excitons in van der Waals Heterostructures. Nature 2019, 567, 71.

(33) Wang, J.; Ardelean, J.; Bai, Y. S.; Steinhoff, A.; Florian, M.; Jahnke, F.; Xu, X. D.; Kira, M.; Hone, J.; Zhu, X. Y. Optical Generation of High Carrier Densities in 2D Semiconductor Heterobilayers. Sci. Adv. 2019, 5, 0145.

(34) Kretinin, A. V.; Cao, Y.; Tu, J. S.; Yu, G. L.; Jalil, R.; Novoselov, K. S.; Haigh, S. J.; Gholinia, A.; Mishchenko, A.; Lozada, M.; Georgiou, T.; Woods, C. R.; Withers, F.; Blake, P.; Eda, G.; Wirsig, A.; Hucho, C.; Watanabe, K.; Taniguchi, T.; Geim, A. K.; et al. Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals. Nano Lett. 2014, 14, 3270—3276.

(35) Kang, K.; Lee, K.-H.; Han, Y.; Gao, H.; Xie, S.; Muller, D. A.; Park, J. Layer-by-Layer Assembly of Two-Dimensional Materials into Wafer-Scale Heterostructures. Nature 2017, 550, 229—233.

(36) Purdie, D. G.; Pugno, N. M.; Taniguchi, T.; Watanabe, K.; Ferrari, A. C.; Lombardo, A. Cleaning Interfaces in Layered Materials Heterostructures. Nat. Commun. 2018, 9, 5387.

(37) Lu, X. B.; Stepanov, P.; Yang, W.; Xie, M.; Aamir, M. A.; Das, I.; Urgell, C.; Watanabe, K.; Taniguchi, T.; Zhang, G. Y.; Bachtold, A.; MacDonald, A. H.; Efetov, D. K. Superconductors, Orbital Magnets and Correlated States in Magic-Angle Bilayer Graphene. Nature 2019, 574, 653.

(38) Rosenberger, M. R.; Chuang, H. J.; McCreary, K. M.; Hanbicki, A. T.; Sivaram, S. V.; Jonker, B. T. Nano-"Squeegee" for the Creation of Clean 2D Material Interfaces. ACS Appl. Mater. Interfaces 2018, 10, 10379—10387.

(39) Hanbicki, A. T.; Chuang, H. J.; Rosenberger, M. R.; Hellberg, C. S.; Sivaram, S. V.; McCreary, K. M.; Mazin, II; Jonker, B. T. Double Indirect Interlayer Exciton in a MoSe2/WSe2 van der Waals Heterostructure. ACS Nano 2018, 12, 4719—4726.

(40) Arora, A.; Nogajewski, K.; Molas, M.; Koperski, M.; Potemski, M. Exciton Band Structure in Layered MoSe2: From a Monolayer to the Bulk Limit. Nanoscale 2015, 7, 20769—20775.

(41) Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J.; Ogletree, F.; Li, J.; Grossman, J. C.; Wu, J. Defects Activated Photoluminescence in Two-Dimensional Semiconductors: Interplay between Bound, Charged, and Free Excitons. Sci. Rep. 2013, 3, 2657.

(42) Hao, K.; Specht, J. F.; Nagler, P.; Xu, L. X.; Tran, K.; Singh, A.; Dass, C. K.; Schuller, C.; Korn, T.; Richter, M.; Knorr, A.; Li, X.; Moody, G. Neutral and Charged Inter-Valley Biexcitons in Monolayer MoSe2. Nat. Commun. 2017, 8, 15552.

(43) Vaclavkova, D.; Wyzula, J.; Nogajewski, K.; Bartos, M.; Slobodeniuk, A. O.; Faugeras, C.; Potemski, M.; Molas, M. R. Singlet and Triplet Trions in WS2 Monolayer Encapsulated in Hexagonal Boron Nitride. Nanotechnology 2018, 29, 32.

(44) Okada, M.; Miyauchi, Y.; Matsuda, K.; Taniguchi, T.; Watanabe, K.; Shinohara, H.; Kitaura, R. Observation of Biexcitonic Emission at Extremely Low Power Density in Tungsten Disulfide Atomic Layers Grown on Hexagonal Boron Nitride. Sci. Rep. 2017, 7, 322.

(45) Huang, J. N.; Hoang, T. B.; Mikkelsen, M. H. Probing the Origin of Excitonic States in Monolayer WSe2. Sci. Rep. 2016, 6, 22414.

(46) Shepard, G. D.; Ardelean, J. V.; Ajayi, O. A.; Rhodes, D.; Zhu, X. Y.; Hone, J. C.; Strauf, S. Trion- Species-Resolved Quantum Beats in MoSe2. ACS Nano 2017, 11, 11550—11558.

(47) Srivastava, P. K.; Ghosh, S. Defect Engineering as a Versatile Route to Estimate Various Scattering Mechanisms in Monolayer Graphene on Solid Substrates. Nanoscale 2015, 7, 16079—16086.

(48) Maher, P.; Wang, L.; Gao, Y. D.; Forsythe, C.; Taniguchi, T.; Watanabe, K.; Abanin, D.; Papic, Z.; Cadden-Zimansky, P.; Hone, J.; Kim, P.; Dean, C. R. Tunable Fractional Quantum Hall Phases in Bilayer Graphene. Science 2014, 345, 61—64.

(49) Uwanno, T.; Taniguchi, T.; Watanabe, K.; Nagashio, K. Electrically Inert h-BN/Bilayer Graphene Interface in All-Two-Dimensional Heterostructure Field Effect Transistors. ACS Appl. Mater. Interfaces 2018, 10, 28780—28788.

(50) Shree, S.; Semina, M.; Robert, C.; Han, B.; Amand, T.; Balocchi, A.; Manca, M.; Courtade, E.; Marie, X.; Taniguchi, T.; Watanabe, K.; Glazov, M. M.; Urbaszek, B. Observation of Exciton-Phonon Coupling in MoSe2 Monolayers. Phys. Rev. B 2018, 98, 035302.

(51) Lorchat, E.; Lopez, L. E. P.; Robert, C.; Lagarde, D.; Froehlicher, G.; Taniguchi, T.; Watanabe, K.; Marie, X.; Berciaud, S. Filtering the Photoluminescence Spectra of Atomically Thin Semiconductors with Graphene. Nat. Nanotech. 2020, 15, 283.

(52) He, Z. Y.; Xu, W. S.; Zhou, Y. Q.; Wang, X. C.; Sheng, Y. W.; Rong, Y. M.; Guo, S. Q.; Zhang, J. Y.; Smith, J. M.; Warner, J. H. Biexciton Formation in Bilayer Tungsten Disulfide. ACS Nano 2016, 10, 2176— 2183.

(53) Paradisanos, I.; Germanis, S.; Pelekanos, N. T.; Fotakis, C.; Kymakis, E.; Kioseoglou, G.; Stratakis, E. Room Temperature Observation of Biexcitons in Exfoliated WS2 Monolayers. Appl. Phys. Lett. 2017, 110, 193102.

(54) Goryca, M.; Li, J.; Stier, A. V.; Taniguchi, T.; Watanabe, K.; Courtade, E.; Shree, S.; Robert, C.; Urbaszek, B.; Marie, X.; Crooker, S. A. Revealing Exciton Masses and Dielectric Properties of Monolayer Semiconductors with High Magnetic Fields. Nat. Commun. 2019, 10, 4172.

(55) Moody, G.; Dass, C. K.; Hao, K.; Chen, C. H.; Li, L. J.; Singh, A.; Tran, K.; Clark, G.; Xu, X. D.; Berghauser, G.; Malic, E.; Knorr, A.; Li, X. Intrinsic Homogeneous Linewidth and Broadening Mechanisms of Excitons in Monolayer Transition Metal Dichalcogenides. Nat. Commun. 2015, 6, 8315.

(56) Masubuchi, S.; Morimoto, M.; Morikawa, S.; Onodera, M.; Asakawa, Y.; Watanabe, K.; Taniguchi, T.; Machida, T. Autonomous Robotic Searching and Assembly of Two-Dimensional Crystals to Build van der Waals Superlattices. Nat. Commun. 2018, 9, 1413.

(57) Uchiyama, Y.; Kutana, A.; Watanabe, K.; Taniguchi, T.; Kojima, K.; Endo, T.; Miyata, Y.; Shinohara, H.; Kitaura, R. Momentum-Forbidden Dark Excitons in hBN-Encapsulated Monolayer MoS2. npj 2D Mater. Appl. 2019, 3, 1—6.

(58) Sader, J. E.; Chon, J. W. M.; Mulvaney, P. Calibration of Rectangular Atomic Force Microscope Cantilevers. Rev. Sci. Instrum. 1999, 70, 3967—3969.

(59) Schmit, P. P. The Interaction between Mott-Wannier Excitons in a Vibrating Lattice. J. Phys. C: Sol. Stat. Phys. 1969, 2, 785.

(60) Shahnazaryan, V.; Shelykh, I. A.; Kyriienko, O. Attractive Coulomb Interaction of Two-Dimensional Rydberg Excitons. Phys. Rev. B 2016, 93, 9.

(61) Kylanpaa, I.; Komsa, H. P. Binding Energies of Exciton Complexes in Transition Metal Dichalcogenide Monolayers and Effect of Dielectric Environment. Phys. Rev. B 2015, 92, 6.

(62) Szyniszewski, M.; Mostaani, E.; Drummond, N. D.; Fal'ko, V. I. Binding Energies of Trions and Biexcitons in Two-Dimensional Semiconductors from Diffusion Quantum Monte Carlo Calculations. Phys. Rev. B 2017, 95, 5.

(63) Zhang, D. K.; Kidd, D. W.; Varga, K. Excited Biexcitons in Transition Metal Dichalcogenides. Nano Lett. 2015, 15, 7002—7005.

(64) Roch, J. G.; Leisgang, N.; Froehlicher, G.; Makk, P.; Watanabe, K.; Taniguchi, T.; Schonenberger, C.; Warburton, R. J. Quantum-Confined Stark Effect in a MoS2 Monolayer van der Waals Heterostructure. Nano Lett. 2018, 18, 1070—1074.

(65) Hoshi, Y; Kuroda, T.; Okada, M.; Moriya, S.; Masubuchi, S.; Watanabe, K.; Taniguchi, T.; Kitaura, R.; Machida, T. Suppression of Exciton-Exciton Annihilation in Tungsten Disulfide Monolayers Encapsulated by Hexagonal Boron Nitrides. Phys. Rev. B 2018, 95, 241403.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る