リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Infrared and Near-Infrared Spectrometry of Anatase and Rutile Particles Bandgap Excited in Liquid」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Infrared and Near-Infrared Spectrometry of Anatase and Rutile Particles Bandgap Excited in Liquid

Fu, Zhebin Onishi, Hiroshi 神戸大学

2023.01.12

概要

Chemical conversion of materials is completed in milliseconds or seconds by assembling atoms over semiconductor photocatalysts. Bandgap-excited electrons and holes reactive on this time scale are key to efficient atom assembly to yield the desired products. In this study, attenuated total reflection of infrared and near-infrared light was applied to characterize and quantify the electronic absorption of TiO₂ photocatalysts excited in liquid. Nanoparticles of rutile or anatase were placed on a diamond prism, covered with liquid, and irradiated by steady UV light through the prism. Electrons excited in rutile particles (JRC-TIO-6) formed small polarons characterized by a symmetric absorption band spread over 10000–700 cm⁻¹ with a maximum at 6000 cm⁻¹. Electrons in anatase particles (JRC-TIO-7) created large polarons and produced an asymmetric absorption band that gradually strengthened at wavenumbers below 5000 cm⁻¹ and sharply weakened at 1000 cm⁻¹. The absorption spectrum of large electron polarons in TIO-7 was compared with the absorption reported in a Sr-doped NaTaO₃ photocatalyst, and it was suggested that excited electrons were accommodated as large polarons in NaTaO₃ photocatalysts efficient for artificial photosynthesis. UV-light power dependence of the absorption bands was observed in N₂-exposed decane liquid to deduce electron–hole recombination kinetics. With light power density P > 200 W m⁻² (TIO-6) and 2000 W m⁻² (TIO-7), the polaron absorptions were enhanced with absorbance being proportional to P¹/². The observed 1/2-order power law suggested recombination of multiple electrons and holes randomly moving in each particle. Upon excitation with smaller P, the power-law order increased to unity. The unity-order power law was interpreted with recombination of an electron and a hole that were excited by the same photon. In addition, an average lifetime of 1 ms was estimated with electron polarons in TIO-6 when weakly excited at P = 20 W m⁻² to simulate solar-light irradiation.

この論文で使われている画像

参考文献

The authors thank Dr. Yi Hao Chew (Kobe University) for his

comments on the manuscript. This study was supported by JSPS

KAKENHI (Grants 18KK0161, 19H00915, and 22H00344).

(1) Iwata, K.; Takaya, T.; Hamaguchi, H.; Yamakata, A.; Ishibashi, T.;

Onishi, H.; Kuroda, H. Carrier Dynamics in TiO2 and Pt/TiO2

Powders Observed by Femtosecond Time-Resolved Near-Infrared

326

https://doi.org/10.1021/acs.jpcb.2c07433

J. Phys. Chem. B 2023, 127, 321−327

The Journal of Physical Chemistry B

pubs.acs.org/JPCB

Spectroscopy at a Spectral Region of 0.9−1.5 μm with the Direct

Absorption Method. J. Phys. Chem. B 2004, 108, 20233−20239.

(2) Paz, Y. Transient IR spectroscopy as a tool for studying

photocatalytic materials. J. Phys.: Condens. Matter 2019, 31, 503004.

(3) Kranz, C.; Wächtler, M. Characterizing photocatalysts for water

splitting: from atoms to bulk and from slow to ultrafast processes. Chem.

Soc. Rev. 2021, 50, 1407−1437.

(4) Takanabe, K. Addressing fundamental experimental aspects of

photocatalysis studies. J. Catal. 2019, 370, 480−484.

(5) Kosaka, T.; Teduka, Y.; Ogura, T.; Zhou, Y.; Hisatomi, T.;

Nishiyama, H.; Domen, K.; Takahashi, Y.; Onishi, H. Transient

Kinetics of O2 Evolution in Photocatalytic Water-Splitting Reaction.

ACS Catal. 2020, 10, 13159−13164.

(6) Cronemeyer, D. C. Electrical and Optical Properties of Rutile

Single Crystals. Phys. Rev. 1952, 87, 876−886.

(7) Bogomolov, V. N.; Mirlin, D. N. Optical Absorption by Polarons

in Rutile (TiO2) Single Crystals. Phys. Status Solidi 1968, 27, 443−453.

(8) Yamakata, A.; Ishibashi, T.; Onishi, H. Time-Resolved Infrared

Absorption Spectroscopy of Photo-Generated Electrons in Platinized

TiO2 Particles. Chem. Phys. Lett. 2001, 333, 271−277.

(9) Panayotov, D. A.; Yates, J. T., Jr. n-type doping of TiO2 with

atomic hydrogen-observation of the production of conduction band

electrons by infrared spectroscopy. Chem. Phys. Lett. 2007, 436, 204−

208.

(10) Panayotov, D. A.; Burrows, S. P.; Morris, J. R. Infrared

spectroscopic studies of conduction band and trapped electrons in

UV-photoexcited, H-atom n-doped, and thermally reduced TiO2. J.

Phys. Chem. C 2012, 116, 4535−4544.

(11) Yamakata, A.; Vequizo, J. J. M.; Matsunaga, H. Distinctive

Behavior of Photogenerated Electrons and Holes in Anatase and Rutile

TiO2 Powders. J. Phys. Chem. C 2015, 119, 24538−24545.

(12) Shinoda, T.; Murakami, N. Photoacoustic Fourier Transform

Near- and Mid-Infrared Spectroscopy for Measurement of Energy

Levels of Electron Trapping Sites in Titanium(IV) Oxide Photocatalyst

Powders. J. Phys. Chem. C 2019, 123, 12169−12175.

(13) Fu, Z.; Hirai, T.; Onishi, H. Long-Life Electrons in Metal-Doped

Alkali-Metal Tantalate Photocatalysts Excited under Water. J. Phys.

Chem. C 2021, 125, 26398−26405.

(14) The refractive index at 1 μm wavelength of diamond and water

was quoted from the CRC Handbook of Chemistry andPhysics, 92nd ed.;

Haynes, W. M., Lide, D. R., Eds.; CRC Press: Boca Raton, FL, 2011;

Chapters 10 and 12.

(15) Yamakata, A.; Ishibashi, T.; Onishi, H. Time-Resolved Infrared

Absorption Study of Nine TiO2 Photocatalysts. Chem. Phys. 2007, 339,

133−137.

(16) Ohno, T.; Haga, D.; Fujihara, K.; Kaizaki, K.; Matsumura, M.

Unique Effects of Iron(III) Ions on Photocatalytic and Photoelectrochemical Properties of Titanum Dioxide. J. Phys. Chem. B

1997, 101, 6415−6419.

(17) Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H.

Stoichiometric water splitting into H2 and O2 using a mixture of two

different photocatalysts and an IO3−/I− shuttle redox mediator under

visible light irradiation. Chem. Commun. 2001, 2416−2417.

(18) Savory, D. M.; McQuillan, A. J. IR spectroscopic behavior of

polaronic trapped electrons in TiO2 under aqueous photocatalytic

conditions. J. Phys. Chem. C 2014, 118, 13680−13692.

(19) An, L.; Onishi, H. Electron-Hole Recombination Controlled by

Doping Sites in Perovskite-Structured Photocatalysts: Sr-Doped

NaTaO3. ACS Catal. 2015, 5, 3196−3206.

(20) Warren, D. S.; McQuillan, A. J. Influence of Adsorbed Water on

Phonon and UV-Induced IR Absorptions of TiO2 Photocatalytic

Particle Films. J. Phys. Chem. B 2004, 108, 19373−19379.

(21) Ohtani, B.; Prieto-Mahaney, O. O.; Li, D.; Abe, R. What is

Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J.

Photochem. Photobio. A 2010, 216, 179−182.

(22) Lewis, N. S.; Rosenbluth, M. L.Theory of Semiconductor

Materials. In Photocatalysis, Fundamentals and Applications; Serpone,

Article

N., Pelizzeti, E., Eds.; John Wiley and Sons: New York, 1989; pp 60−62

and Figure 3.8.

(23) Kopp, G.; Lean, J. L. A new, lower value of total solar irradiance:

Evidence and climate significance,. Geophys. Res. Lett. 2011, 38,

L01706.

(24) Franchini, C.; Reticcioli, M.; Setvin, M.; Diebold, U. Polarons in

materials. Nat. Rev. Mater. 2021, 6, 560−586. and references therein.

(25) Emin, D. Optical properties of large and small polarons and

bipolarons. Phys. Rev. B 1993, 48, 13691−13702.

(26) Onishi, H.; Aruga, T.; Egawa, C.; Iwasawa, Y. Modification of

Surface Electronic Structure on TiO2(110) and TiO2(441) by Na

Deposition. Surf. Sci. 1988, 199, 54−66.

(27) Moser, S.; Moreschini, L.; Jácimovíc, J.; Barišíc, O. S.; Berger, H.;

Magrez, A.; Chang, Y. J.; Kim, K. S.; Bostwick, A.; Rotenberg, E.; Forró,

L.; Grioni, M. Tunable Polaronic Conduction in Anatase TiO2. Phys.

Rev. Lett. 2013, 110, 196403.

(28) Iwase, A.; Kato, H.; Kudo, A. The Effect of Alkaline Earth Metal

Ion Dopants on Photocatalytic Water Splitting by NaTaO3 Powder.

ChemSusChem 2009, 2, 873−877.

(29) Onishi, H. Sodium Tantalate Photocatalysts Doped with Metal

Cations: Why Are They Active for Water Splitting? ChemSusChem

2019, 12, 1825−1834.

(30) Deskins, N. A.; Dupuis, M. Electron transport via polaron

hopping in bulk TiO2: a density functional theory characterization.

Phys. Rev. B 2007, 75, 195212.

(31) Di Valentin, C.; Selloni, A. Bulk and Surface Polarons in

Photoexcited Anatase TiO2. J. Phys. Chem. Lett. 2011, 2, 2223−2228.

(32) Davies, D. W.; Savory, C. N.; Frost, J. M.; Scanlon, D. O.;

Morgan, B. J.; Walsh, A. Descriptors for electron and hole charge

carriers in metal oxides. J. Phys. Chem. Lett. 2020, 11, 438−444.

(33) Uratani, H.; Nakai, H. Simulating the Coupled StructuralElectronic Dynamics of Photoexcited Lead Iodide Perovskites. J. Phys.

Chem. Lett. 2020, 11, 4448−4455.

(34) Sezen, H.; Shang, H.; Bebensee, F.; Yang, C.; Buchholz, M.;

Nefedov, A.; Heissler, S.; Carbogno, C.; Scheffler, M.; Rinke, P.; et al.

Evidence for photogenerated intermediate hole polarons in ZnO. Nat.

Commun. 2015, 6, 6901.

(35) Bandaranayake, S.; Hruska, E.; Londo, S.; Biswas, S.; Baker, L. R.

Small polarons and surface defects in metal oxide photocatalysts studied

using XUV reflection-absorption spectroscopy. J. Phys. Chem. C 2020,

124, 22853−22870.

(36) Shelton, J. L.; Knowles, K. E. Thermally Activated Optical

Absorption into Polaronic States in Hematite. J. Phys. Chem. Lett. 2021,

12, 3343−3351.

(37) Tanner, A. J.; Thornton, G. TiO2 Polarons in the Time Domain:

Implications for Photocatalysis. J. Phys. Chem. Lett. 2022, 13, 559−566.

(38) Ji, Y.; Wang, B.; Luo, Y. Location of trapped hole on rutileTiO2(110) surface and its role in water oxidation. J. Phys. Chem. C 2012,

116, 7863−7866.

(39) Di Valentin, C. A mechanism for the hole-mediated water

photooxidation on TiO2(101) surfaces. J. Phys.: Condens. Matter 2016,

28, 074002.

(40) Gono, P.; Wiktor, J.; Ambrosio, F.; Pasquarello, A. Surface

Polarons Reducing Overpotentials in the Oxygen Evolution Reaction.

ACS Catal. 2018, 8, 5847−5851.

(41) Rajan, A. G.; Martirez, J. M. P.; Carter, E. A. Why do we use the

materials and operating conditions we use for heterogeneous

(photo)electrochemical water splitting. ACS Catal. 2020, 10, 11177−

11234.

327

https://doi.org/10.1021/acs.jpcb.2c07433

J. Phys. Chem. B 2023, 127, 321−327

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る