リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「有限速度のせん断外場を印加したアモルファス固体系における塑性変形の統計解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

有限速度のせん断外場を印加したアモルファス固体系における塑性変形の統計解析

高畑 正一 東北大学

2020.05.20

概要

アモルファス固体の塑性変形は準静的過程に関してはポテンシャルエネルギー地形描像に基づいて理解が進展し,空間構造の性質がよく知られている.一方で,せん断率が有限の場合は準静的過程のような明確な理解が得られていない.まず有限のせん断速度の応力降下イベントを様々な指標で特徴付け,イベント間の相違点,およびAQS条件のイベントとの比較を行った.その結果,低せん断速度領域では定量的に異なる2種類のイベントが存在し,そのうち1種類のイベントは準静的条件のイベントと本質的に異なることを明らかにした.また,この結果はポテンシャルエネルギー地形描像の観点で解釈できることを示した.さらにせん断速度を上げていくと,空間構造の観点で低せん断領域における2種類のイベントの性質が混在することを示した.

参考文献

[1] Daniel Bonn, Morton M Denn, Ludovic Berthier, Thibaut Divoux, and S´ebastien Manneville. Yield stress materials in soft condensed matter. Reviews of Modern Physics, 89(3):035005, 2017.

[2] Alexandre Nicolas, Ezequiel E Ferrero, Kirsten Martens, and Jean-Louis Barrat. Deformation and flow of amorphous solids: Insights from elastoplastic models. Reviews of Modern Physics, 90(4):045006, 2018.

[3] Ludovic Berthier and Giulio Biroli. Theoretical perspective on the glass transition and amorphous materials. Reviews of Modern Physics, 83(2):587, 2011.

[4] Walter Kauzmann. The nature of the glassy state and the behavior of liquids at low temperatures. Chemical reviews, 43(2):219–256, 1948.

[5] Gerold Adam and Julian H Gibbs. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. The journal of chemical physics, 43(1):139–146, 1965.

[6] Marc M´ezard and Giorgio Parisi. Thermodynamics of glasses: A first principles computation. Journal of Physics: Condensed Matter, 11(10A):A157, 1999.

[7] Glenn H Fredrickson and Hans C Andersen. Kinetic ising model of the glass transition. Physical review letters, 53(13):1244, 1984.

[8] Felix Ritort and Peter Sollich. Glassy dynamics of kinetically constrained models. Advances in Physics, 52(4):219–342, 2003.

[9] Andrea J Liu and Sidney R Nagel. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys., 1(1):347–369, 2010.

[10] Martin van Hecke. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. Journal of Physics: Condensed Matter, 22(3):033101, 2009.

[11] J Clerk Maxwell. L. on the calculation of the equilibrium and stiffness of frames. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 27(182):294–299, 1864.

[12] Shlomo Alexander. Amorphous solids: their structure, lattice dynamics and elasticity. Physics reports, 296(2-4):65–236, 1998.

[13] Cristian F Moukarzel. Isostatic phase transition and instability in stiff granular materials. Physical review letters, 81(8):1634, 1998.

[14] Corey S O’hern, Leonardo E Silbert, Andrea J Liu, and Sidney R Nagel. Jamming at zero temperature and zero applied stress: The epitome of disorder. Physical Review E, 68(1):011306, 2003.

[15] Leonardo E Silbert, Deniz Erta¸s, Gary S Grest, Thomas C Halsey, and Dov Levine. Geometry of frictionless and frictional sphere packings. Physical Review E, 65(3):031304, 2002.

[16] HP Zhang and HA Makse. Jamming transition in emulsions and granular materials. Physical Review E, 72(1):011301, 2005.

[17] Ell´ak Somfai, Jean-No¨el Roux, Jacco H Snoeijer, Martin Van Hecke, and Wim Van Saarloos. Elastic wave propagation in confined granular systems. Physical Review E, 72(2):021301, 2005.

[18] Ell´ak Somfai, Martin van Hecke, Wouter G Ellenbroek, Kostya Shundyak, and Wim van Saarloos. Critical and noncritical jamming of frictional grains. Physical Review E, 75(2):020301, 2007.

[19] Peter Schall, David A Weitz, and Frans Spaepen. Structural rearrangements that govern flow in colloidal glasses. Science, 318(5858):1895–1899, 2007.

[20] KE Jensen, David A Weitz, and F Spaepen. Local shear transformations in deformed and quiescent hard-sphere colloidal glasses. Physical Review E, 90(4):042305, 2014.

[21] Kenneth W Desmond and Eric R Weeks. Measurement of stress redistribution in flowing emulsions. Physical review letters, 115(9):098302, 2015.

[22] AS Argon and HY Kuo. Plastic flow in a disordered bubble raft (an analog of a metallic glass). Materials science and Engineering, 39(1):101–109, 1979.

[23] Georges Debregeas, Herve Tabuteau, and J-M Di Meglio. Deformation and flow of a two-dimensional foam under continuous shear. Physical Review Letters, 87(17):178305, 2001.

[24] Anne-Laure Biance, Aline Delbos, and Olivier Pitois. How topological rearrangements and liquid fraction control liquid foam stability. Physical review letters, 106(6):068301, 2011.

[25] Axelle Amon, Ary Bruand, J´erˆome Crassous, Eric Cl´ement, et al. Hot spots in an athermal system. Physical review letters, 108(13):135502, 2012.

[26] DV Denisov, KA L¨orincz, JT Uhl, Karin A Dahmen, and P Schall. Universality of slip avalanches in flowing granular matter. Nature communications, 7:10641, 2016.

[27] Michael L Falk and James S Langer. Dynamics of viscoplastic deformation in amorphous solids. Physical Review E, 57(6):7192, 1998.

[28] John Douglas Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241(1226):376–396, 1957.

[29] Guillemette Picard, Armand Ajdari, Fran¸cois Lequeux, and Lyd´eric Bocquet. Elastic consequences of a single plastic event: A step towards the microscopic modeling of the flow of yield stress fluids. The European Physical Journal E, 15(4):371–381, 2004.

[30] S Kobayashi, K Maeda, and S Takeuchi. Computer simulation of deformation of amorphous cu57zr43. Acta Metallurgica, 28(12):1641–1652, 1980.

[31] Frank H Stillinger and Thomas A Weber. Hidden structure in liquids. Physical Review A, 25(2):978, 1982.

[32] Frank H Stillinger and Thomas A Weber. Dynamics of structural transitions in liquids. Physical Review A, 28(4):2408, 1983.

[33] Dennis L Malandro and Daniel J Lacks. Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses. The Journal of chemical physics, 110(9):4593–4601, 1999.

[34] Craig E Maloney and Ana¨el Lemaˆıtre. Amorphous systems in athermal, quasistatic shear. Physical Review E, 74(1):016118, 2006.

[35] Luka Gartner and Edan Lerner. Nonlinear plastic modes in disordered solids. Physical Review E, 93(1):011001, 2016.

[36] Anne Tanguy, Fabien Leonforte, and J-L Barrat. Plastic response of a 2d lennard-jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain rate. The European Physical Journal E, 20(3):355–364, 2006.

[37] CE Maloney. Correlations in the elastic response of dense random packings. Physical review letters, 97(3):035503, 2006.

[38] Claus Heussinger and Jean-Louis Barrat. Jamming transition as probed by quasistatic shear flow. Physical review letters, 102(21):218303, 2009.

[39] Jerome Faillettaz, Francois Louchet, and Jean-Robert Grasso. Two-threshold model for scaling laws of noninteracting snow avalanches. Physical review letters, 93(20):208001, 2004.

[40] James P Sethna, Karin Dahmen, Sivan Kartha, James A Krumhansl, Bruce W Roberts, and Joel D Shore. Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations. Physical Review Letters, 70(21):3347, 1993.

[41] V De Zotti, K Rapina, P-P Cortet, L Vanel, and S Santucci. Bending to kinetic energy transfer in adhesive peel front microinstability. Physical review letters, 122(6):068005, 2019.

[42] Marie-Julie Dalbe, Pierre-Philippe Cortet, Matteo Ciccotti, Lo¨ıc Vanel, and St´ephane Santucci. Multiscale stick-slip dynamics of adhesive tape peeling. Physical review letters, 115(12):128301, 2015.

[43] Paul A Houle and James P Sethna. Acoustic emission from crumpling paper. Physical Review E, 54(1):278, 1996.

[44] Eric M Kramer and Alexander E Lobkovsky. Universal power law in the noise from a crumpled elastic sheet. Physical Review E, 53(2):1465, 1996.

[45] Mohammed A Sheikh, Richard L Weaver, and Karin A Dahmen. Avalanche statistics identify intrinsic stellar processes near criticality in kic 8462852. Physical review letters, 117(26):261101, 2016.

[46] Jonathan T Uhl, Shivesh Pathak, Danijel Schorlemmer, Xin Liu, Ryan Swindeman, Braden AW Brinkman, Michael LeBlanc, Georgios Tsekenis, Nir Friedman, Robert Behringer, et al. Universal quake statistics: from compressed nanocrystals to earthquakes. Scientific reports, 5:16493, 2015.

[47] Dansong Zhang, Karin A Dahmen, and Martin Ostoja-Starzewski. Scaling of slip avalanches in sheared amorphous materials based on large-scale atomistic simulations. Physical Review E, 95(3):032902, 2017.

[48] Dmitry V Denisov, Kinga A L˝orincz, Wendelin J Wright, Todd C Hufnagel, Aya Nawano, Xiaojun Gu, Jonathan T Uhl, Karin A Dahmen, and Peter Schall. Universal slip dynamics in metallic glasses and granular matter–linking frictional weakening with inertial effects. Scientific reports, 7:43376, 2017.

[49] Ricard V Sol´e and Susanna C Manrubia. Extinction and self-organized criticality in a model of large-scale evolution. Physical Review E, 54(1):R42, 1996.

[50] Serge Galam. Rational group decision making: A random field ising model at t= 0. Physica A: Statistical Mechanics and its Applications, 238(1-4):66–80, 1997.

[51] Nicholas P Bailey, Jakob Schiøtz, Ana¨el Lemaˆıtre, and Karsten W Jacobsen. Avalanche size scaling in sheared three-dimensional amorphous solid. Physical review letters, 98(9):095501, 2007.

[52] Michel Tsamados. Plasticity and dynamical heterogeneity in driven glassy materials. The European Physical Journal E, 32(2):165–181, 2010.

[53] Ana¨el Lemaˆıtre and Christiane Caroli. Rate-dependent avalanche size in athermally sheared amorphous solids. Physical review letters, 103(6):065501, 2009.

[54] Joyjit Chattoraj, Christiane Caroli, and Ana¨el Lemaˆıtre. Universal additive effect of temperature on the rheology of amorphous solids. Physical review letters, 105(26):266001, 2010.

[55] Smarajit Karmakar, Edan Lerner, Itamar Procaccia, and Jacques Zylberg. Statistical physics of elastoplastic steady states in amorphous solids: Finite temperatures and strain rates. Physical Review E, 82(3):031301, 2010.

[56] Kuniyasu Saitoh and Hideyuki Mizuno. Anomalous energy cascades in dense granular materials yielding under simple shear deformations. Soft matter, 12(5):1360–1367, 2016.

[57] Brian P Tighe, Erik Woldhuis, Joris JC Remmers, Wim van Saarloos, and Martin van Hecke. Model for the scaling of stresses and fluctuations in flows near jamming. Physical review letters, 105(8):088303, 2010.

[58] Fathollah Varnik, Suvendu Mandal, Vijaykumar Chikkadi, Dmitry Denisov, Peter Olsson, Daniel V˚agberg, Dierk Raabe, and Peter Schall. Correlations of plasticity in sheared glasses. Physical Review E, 89(4):040301, 2014.

[59] H Hertz. Uber die ber¨uhrung fester elastischer k¨orper. ¨ Journal f¨ur die reine und angewandte Mathematik, 29:156–171, 1881.

[60] Peter A Cundall and Otto DL Strack. A discrete numerical model for granular assemblies. geotechnique, 29(1):47–65, 1979.

[61] Ryohei Seto, Romain Mari, Jeffrey F Morris, and Morton M Denn. Discontinuous shear thickening of frictional hard-sphere suspensions. Physical review letters, 111(21):218301, 2013.

[62] Michio Otsuki and Hisao Hayakawa. Avalanche contribution to shear modulus of granular materials. Physical Review E, 90(4):042202, 2014.

[63] K Michael Salerno and Mark O Robbins. Effect of inertia on sheared disordered solids: Critical scaling of avalanches in two and three dimensions. Physical Review E, 88(6):062206, 2013.

[64] Daniel V˚agberg, Peter Olsson, and S Teitel. Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks. Physical Review E, 95(5):052903, 2017.

[65] Jie Lin, Edan Lerner, Alberto Rosso, and Matthieu Wyart. Scaling description of the yielding transition in soft amorphous solids at zero temperature. Proceedings of the National Academy of Sciences, 111(40):14382–14387, 2014.

[66] Baoshuang Shang, Pengfei Guan, and Jean-Louis Barrat. Elastic avalanches reveal marginal behavior in amorphous solids. Proceedings of the National Academy of Sciences, 2019.

[67] Claus Heussinger, Ludovic Berthier, and J-L Barrat. Superdiffusive, heterogeneous, and collective particle motion near the fluid-solid transition in athermal disordered materials. EPL (Europhysics Letters), 90(2):20005, 2010.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る