リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「MTH1 and OGG1 maintain a low level of 8‑oxoguanine in Alzheimer’s brain, and prevent the progression of Alzheimer’s pathogenesis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

MTH1 and OGG1 maintain a low level of 8‑oxoguanine in Alzheimer’s brain, and prevent the progression of Alzheimer’s pathogenesis

岡, 素雅子 Oka, Sugako オカ, スガコ Leon, Julio Sakumi, Kunihiko 作見, 邦彦 サクミ, クニヒコ Abolhassani, Nona Sheng, Zijing Tsuchimoto, Daisuke 土本, 大介 ツチモト, ダイスケ LaFerla, M. Frank Nakabeppu, Yusaku 中別府, 雄作 ナカベップ, ユウサク 九州大学

2021.03.23

概要

8-Oxoguanine (8-oxoG), a major oxidative base lesion, is highly accumulated in Alzheimer’s disease (AD) brains during the pathogenic process. MTH1 hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, thereby avoiding

この論文で使われている画像

参考文献

1. Nakabeppu, Y. Cellular levels of 8-oxoguanine in either DNA or the nucleotide pool play pivotal roles in carcinogenesis and survival

of cancer cells. Int. J. Mol. Sci. 15, 12543–12557. https​://doi.org/10.3390/ijms1​50712​543 (2014).

2. Ames, B. N., Shigenaga, M. K. & Hagen, T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci.

U. S. A. 90, 7915–7922 (1993).

3. Y. Nakabeppu, Neurodegeneration caused by accumulation of an oxidized base lesion, 8-oxoguanine, in nuclear and mitochondrial

DNA: from animal models to human diseases in The Base Excision Repair Pathway: Molecular Mechanisms and Role in Disease

Development and Therapeutic Design (ed. Wilson III, D.M.) 523–556 (World Scientific, 2017).

4. Nunomura, A. et al. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropath. Exp. Neur. 60, 759–767 (2001).

5. Cobb, C. A. & Cole, M. P. Oxidative and nitrative stress in neurodegeneration. Neurobiol. Dis. 84, 4–21 (2015).

6. Querfurth, H. W. & LaFerla, F. M. Alzheimer’s disease. N. Engl. J. Med. 362, 329–344 (2010).

7. Cardoso, S. M., Santos, S., Swerdlow, R. H. & Oliveira, C. R. Functional mitochondria are required for amyloid β-mediated neurotoxicity. FASEB J. 8, 1439–1441 (2001).

8. Lustbader, J. W. et al. ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 304, 448–452 (2004).

9. Leuner, K. et al. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid. Redox Signal.

16, 1421–1433 (2012).

10. Oka, S. et al. Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer’s disease.

Sci. Rep. 6, 37889. https​://doi.org/10.1038/srep3​7889 (2016).

11. Kerr, J. S. et al. Mitophagy and alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci. 40, 151–166 (2017).

12. Kasai, H. & Nishimura, S. Hydroxylation of deoxyguanosine at the c-8 position by ascorbic-acid and other reducing agents. Nucleic

Acids Res. 12, 2137–2145 (1984).

13. Yamaguchi, H. et al. MTH1, an oxidized purine nucleoside triphosphatase, protects the dopamine neurons from oxidative damage

in nucleic acids caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Cell Death Differ. 13, 551–563 (2006).

14. Lovell, M. A. & Markesbery, W. R. Oxidatively modified RNA in mild cognitive impairment. Neurobiol. Dis. 29, 169–175 (2008).

15. Nakabeppu, Y., Ohta, E. & Abolhassani, N. MTH1 as a nucleotide pool sanitizing enzyme: Friend or foe?. Free Radic. Biol. Med.

107, 151–158 (2017).

16. Boiteux, S. & Radicella, J. P. The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis.

Arch. Biochem. Biophys. 377, 1–8 (2000).

17. Gabbita, S. P., Lovell, M. A. & Markesbery, W. R. Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J. Neurochem.

71, 2034–2040 (1998).

Scientific Reports |

(2021) 11:5819 |

https://doi.org/10.1038/s41598-021-84640-9

15

Vol.:(0123456789)

www.nature.com/scientificreports/

18. de la Monte, S. M., Luong, T., Neely, T. R., Robinson, D. & Wands, J. R. Mitochondrial DNA damage as a mechanism of cell loss

in Alzheimer’s disease. Lab. Invest. 80, 1323–1335 (2000).

19. Lovell, M. A. & Markesbery, W. R. Ratio of 8-hydroxyguanine in intact DNA to free 8-hydroxyguanine is increased in Alzheimer

disease ventricular cerebrospinal fluid. Arch. Neurol. 58, 392–396 (2001).

20. Lovell, M. A., Soman, S. & Bradley, M. A. Oxidatively modified nucleic acids in preclinical Alzheimer’s disease (PCAD) brain.

Mech. Ageing Dev. 132, 443–448 (2011).

21. Furuta, A., Iida, T., Nakabeppu, Y. & Iwaki, T. Expression of hMTH1 in the hippocampi of control and Alzheimer’s disease. NeuroReport 12, 2895–2899 (2001).

22. Iida, T., Furuta, A., Nishioka, K., Nakabeppu, Y. & Iwaki, T. Expression of 8-oxoguanine DNA glycosylase is reduced and associated

with neurofibrillary tangles in Alzheimer’s disease brain. Acta Neuropathol. 103, 20–25 (2002).

23. Mao, G. et al. Identification and characterization of OGG1 mutations in patients with Alzheimer’s disease. Nucleic Acids Res. 35,

2759–2766 (2007).

24. Kajitani, K. et al. MTH1, an oxidized purine nucleoside triphosphatase, suppresses the accumulation of oxidative damage of nucleic

acids in the hippocampal microglia during kainate-induced excitotoxicity. J. Neurosci. 26, 1688–1698 (2006).

25. Wong, A. W., McCallum, G. P., Jeng, W. & Wells, P. G. Oxoguanine glycosylase 1 protects against methamphetamine-enhanced

fetal brain oxidative DNA damage and neurodevelopmental deficits. J. Neurosci. 28, 9047–9054 (2008).

26. Cardozo-Pelaez, F., Sanchez-Contreras, M. & Nevin, A. B. Ogg1 null mice exhibit age-associated loss of the nigrostriatal pathway

and increased sensitivity to MPTP. Neurochem. Int. 61, 721–730 (2012).

27. Sheng, Z. et al. 8-Oxoguanine causes neurodegeneration during MUTYH-mediated DNA base excision repair. J. Clin. Invest. 122,

4344–4361 (2012).

28. Y. Nakabeppu, Molecular Pathophysiology of Insulin Depletion, Mitochondrial Dysfunction, and Oxidative Stress in Alzheimer’s

Disease Brain in Diabetes Mellitus, A risk factor for Alzheimer’s disease, (ed. Nakabeppu, Y., Ninomiya, T) 27–44. (Springer, 2019).

29. Oddo, S. et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction.

Neuron 39, 409–421 (2003).

30. Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L. & LaFerla, F. M. Intraneuronal Aβ causes the onset of early Alzheimer’s

disease-related cognitive deficits in transgenic mice. Neuron 45, 675–688 (2005).

31. Schmued, L. C., Stowers, C. C., Scallet, A. C. & Xu, L. Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res. 1035, 24–31 (2005).

32. Yoon, S. Y., Patel, D. & Dougherty, P. M. Minocycline blocks lipopolysaccharide induced hyperalgesia by suppression of microglia

but not astrocytes. Neuroscience 221, 214–224 (2012).

33. Woo, J. M. et al. Characterization of changes in global gene expression in the brain of neuron-specific enolase/human Tau23

transgenic mice in response to overexpression of Tau protein. Int. J. Mol. Med. 25, 667–675 (2010).

34. Stein, T. D. & Johnson, J. A. Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is

associated with increased levels of transthyretin and the activation of cell survival pathways. J. Neurosci. 22, 7380–7388 (2002).

35. Costa, R., Goncalves, A., Saraiva, M. J. & Cardoso, I. Transthyretin binding to A-Beta peptide–impact on A-Beta fibrillogenesis

and toxicity. FEBS Lett. 582, 936–942 (2008).

36. Silva, C. S. et al. Transthyretin neuroprotection in Alzheimer’s disease is dependent on proteolysis. Neurobiol. Aging 59, 10–14

(2017).

37. Yao, J. et al. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease.

Proc. Natl. Acad. Sci. U. S. A. 106, 14670–14675 (2009).

38. Hyun, D. H. et al. The plasma membrane redox system is impaired by amyloid beta-peptide and in the hippocampus and cerebral

cortex of 3xTgAD mice. Exp. Neurol. 225, 423–429 (2010).

39. Leon, J. et al. 8-Oxoguanine accumulation in mitochondrial DNA causes mitochondrial dysfunction and impairs neuritogenesis

in cultured adult mouse cortical neurons under oxidative conditions. Sci. Rep. 6, 22086. https​://doi.org/10.1038/srep2​2086 (2016).

40. A. Verkhratsky, A. Butt, General Pathophysiology of Glia, in Glial Neurobiology 154–165 (John Wiley & Sons, 2007).

41. Mander, P. K., Jekabsone, A. & Brown, G. C. Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. J.

Immunol. 176, 1046–1052 (2006).

42. Bordt, E. A. & Polster, B. M. NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial

activation: a bipartisan affair?. Free Radic. Biol. Med. 76, 34–46 (2014).

43. Chen, S. H., Oyarzabal, E. A. & Hong, J. S. Critical role of the Mac1/NOX2 pathway in mediating reactive microgliosis-generated

chronic neuroinflammation and progressive neurodegeneration. Curr. Opin. Pharmacol. 26, 54–60 (2016).

44. Hokama, M. et al. Altered expression of diabetes-related genes in Alzheimer’s disease brains: the hisayama study. Cereb. Cortex

24, 2476–2488 (2014).

45. Tsuzuki, T. et al. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc. Natl. Acad. Sci.

U. S. A. 98, 11456–11461 (2001).

46. Sakumi, K. et al. Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. Cancer Res. 63,

902–905 (2003).

47. Broestl, L. et al. Ovarian cycle stages modulate Alzheimer-related cognitive and brain network alterations in female mice. Neuro

6, 0132–0217 (2018).

48. Guo, Q. et al. Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat.

Med. 5, 101–106 (1999).

49. Billings, L. M., Green, K. N., McGaugh, J. L. & LaFerla, F. M. Learning decreases Aβ*56 and Tau pathology and ameliorates behavioral decline in 3xTg-AD mice. J. Neurosci. 27, 751–761 (2007).

50. Haruyama, N. et al. 8-Oxoguanine accumulation in aged female brain impairs neurogenesis in the dentate gyrus and major island

of Calleja, causing sexually dimorphic phenotypes. Prog Neurobiol. 180, 101613. https​://doi.org/10.1016/j.pneur​obio.2019.04.002

(2019).

51. Ohno, M., Oka, S. & Nakabeppu, Y. Quantitative analysis of oxidized guanine, 8-oxoguanine, in mitochondrial DNA by immunofluorescence method. Methods Mol. Biol. 554, 199–212 (2009).

Acknowledgements

This work was partly supported by grants from the Japan Society for the Promotion of Science (Grant Numbers

22221004, 17H01391 to Y.N.), the Ministry of Health, Labour, and Welfare, Japan (Grant Number H20-ninchisho-ippan-004 to Y.N.), and the Uehara Memorial Foundation to Y. N. We thank Edanz Group (www.edanz​

editi​ng.com/ac) for editing a draft of this manuscript. We thank E. Koba, R. Ugawa and K. Ichikawa (Laboratory

for Technical Support, Medical Institute of Bioregulation, Kyushu University) for performing the microarray

analysis, transmission electron microscope and preparation of paraffin-embedded blocks. We also thank S.

Kitamura, K. Nakabeppu, T. Kuwano, and T. Koizumi for their technical assistance.

Scientific Reports |

Vol:.(1234567890)

(2021) 11:5819 |

https://doi.org/10.1038/s41598-021-84640-9

16

www.nature.com/scientificreports/

Author contributions

S.O. carried out behavioral analysis and immunostaining, microarray data analysis, statistical analysis of data

and wrote the first draft and revised manuscript. J.L. performed experiments, K.S. performed Western blotting

and prepared sample for electron microscopy and instructed all animal experiments, Z.S. and D. T. instructed

all animal experiments, N.A prepared sample for Western blotting. F.M.L. provided 3xTg-AD mice and Y.N.

conceived the project, analyzed the data, and edited the manuscript. All authors commented on the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https​://doi.

org/10.1038/s4159​8-021-84640​-9.

Correspondence and requests for materials should be addressed to Y.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

Scientific Reports |

(2021) 11:5819 |

https://doi.org/10.1038/s41598-021-84640-9

17

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る