リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study of Drilling Properties in Bone Biomodel」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study of Drilling Properties in Bone Biomodel

Muramoto Yuta 東北大学

2020.03.25

概要

骨切削は整形外科,歯科,脳外科における基本手技である.骨切削の訓練や切削に関連する医療機器の力学試験のために骨モデルは必要不可欠であり,生体骨に比べて扱いの容易さや品質の恒常性に特徴がある.規格に沿って製造された骨モデルも存在するが,生体骨と異なる切削特性を示すことが指摘されている.本研究では,皮質骨の切削特性を再現する骨モデル材料の開発指針獲得のため,骨モデル材料に用いられるアクリル樹脂にセラミック系添加物を混合させた複合材料を作製し,これを用いた切削試験を行うことによって,添加物が切削特性に与える影響を解析した.また切削特性の違いは,切削に寄与する力学特性の違いに基づくと考え,切削に影響すると考えられる力学特性を解析した.更に,切削特性に付随する切削感覚との関連を解明するため,医師による複合材料切削時の感覚調査と切削特性の測定を行った.

試験の結果より,セラミック系添加物を混合することにより複合材料の切削および力学特性が変化することがわかった.混合量 40wt%まで調べると,混合比が高くなるに従い各特性は大きくなった.また複合材料は既存の骨モデルよりも皮質骨に近い切削感覚を示すとの評価を受けた.これらの結果は、添加物が複合材料の硬さや弾性を変化させ,医師が切削時のスラスト力を変化させたことによる可能性がある.

この論文で使われている画像

参考文献

[1] The Statement on the Social Welfare Renovation n.d. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/hokabunya/shakaihoshou/kaikaku_1.html (accessed October 30, 2019).

[2] Cabinet Office The Government of Japan. The 2019 Edition White Paper on Aging Society. 2019.

[3] National Institute of Population and Social Security Research. Population Projections for Japan : 2016- 2065 (With long-range Population Projections : 2066-2115). 2017.

[4] The Japanese Society of Arthroplasty Replacement. 2017 Annual Report. 2017. doi:10.1002/ejoc.201200111.

[5] National Joint Registry (NJR). 16th Annual Report. 2019.

[6] National Joint Registry (NJR). 15th Annual Report. 2018.

[7] Annual Report 2018. 2018. doi:10.3934/math.2019.1.166.

[8] Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007;89:780–5. doi:10.2106/JBJS.F.00222.

[9] Lohfeld S, Barron V, Mchugh PE. Biomodels of Bone: A Review. Ann Biomed Eng 2005;33:1295–311. doi:10.1007/s10439-005-5873-x.

[10] Harrysson O La, Hosni YA, Nayfeh JF. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: Femoral-component case study. BMC Musculoskelet Disord 2007;8. doi:10.1186/1471-2474-8-91.

[11] Arvier JF, Barker TM, Yau YY, D’Urso PS, Atkinson RL, McDermant GR. Maxillofacial biomodelling. Br J Oral Maxillofac Surg 1994;32:276–83. doi:10.1016/0266-4356(94)90046-9.

[12] D’Urso PS, Atkinson RL, Lanigan MW, Earwaker WJ, Bruce IJ, Holmes A, et al. Stereolithographic (SL) biomodelling in craniofacial surgery. Br J Plast Surg 1998;51:522–30. doi:10.1054/bjps.1998.0026.

[13] A Prosthetic Restoration Jaw Model, PRO2002-UL-UP-FEM-28, Nissin Dental Products, Inc. (accessed 2019.10.28) n.d. https://www.nissin- dental.net/products/DentalTrainingProducts/CrownBridge/PRO2002-UL-SP-FEM-28/index.html (accessed September 20, 2009).

[14] A Drilling Training Model, E7-X.1137, Nissin Dental Products, Inc. (accessed 2019.10.28) n.d. http://www.nissin-dental.jp/products/educationalmodels/inplant/E7-X.1137/index.html (accessed November 12, 2019).

[15] Blood vessel model (3DMed), Renaissance of Technology Corporation (R’Tech) (accessed 2019.10.28) n.d. http://www.r-tech.co.jp/en/product/3dmed/ (accessed September 28, 2019).

[16] Hochman JB, Kraut J, Kazmerik K, Unger BJ. Generation of a 3D printed temporal bone model with internal fidelity and validation of the mechanical construct. Otolaryngol - Head Neck Surg (United States) 2014;150:448–54. doi:10.1177/0194599813518008.

[17] Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ. Emerging Applications of Bedside 3D Printing in Plastic Surgery. Front Surg 2015;2. doi:10.3389/fsurg.2015.00025.

[18] Tai BL, Rooney D, Stephenson F, Liao P, Sagher O, Shih AJ, et al. Development of a 3D-printed external ventricular drain placement simulator: technical note. J Neurosurg 2015;123:1070–6. doi:10.3171/2014.12.JNS141867.Disclosure.

[19] Shimizu Y, Tanabe T, Yoshida H, Kasuya M, Matsunaga T, Haga Y, et al. Viscosity measurement of Xanthan-Poly(vinyl alcohol) mixture and its effect on the mechanical properties of the hydrogel for 3D modeling OPEN 2018;8:16538. doi:10.1038/s41598-018-34986-4.

[20] Bento RF, Rocha BA, Freitas EL, Balsalobre F de A. Otobone®: Three-dimensional printed Temporal Bone Biomodel for Simulation of Surgical Procedures. Int Arch Otorhinolaryngol 2019. doi:10.1055/s- 0039-1688924.

[21] Abbott JR, Netherway DJ, Wingate PG, Abbott AH, David DJ, Trott JA, et al. Computer generated mandibular model: surgical role. Aust Dent J 1998;43:373–8. doi:10.1111/j.1834-7819.1998.tb00193.x.

[22] Mizutani J, Matsubara T, Muneyoshi A, Ae F, Tanaka N, Iguchi H, et al. Application of full-scale three- dimensional models in patients with rheumatoid cervical spine. Eur Spine 2008;17:644–9. doi:10.1007/s00586-008-0611-3.

[23] Oliveira M, Sooraj Hussain N, Dias AG, Lopes MA, Azevedo L, Zenha H, et al. 3-D biomodelling technology for maxillofacial reconstruction. Mater Sci Eng C 2008;28:1347–51. doi:10.1016/j.msec.2008.02.007.

[24] Hieu LC, Zlatov N, Sloten J Vander, Bohez E, Khanh L, Binh PH, et al. Medical rapid prototyping applications and methods. Assem Autom 2005;25:284–92. doi:10.1108/01445150510626415.

[25] Alkhodary MA, Abdelraheim AEE, Elsantawy AEH, Al Dahman YH, Al-Mershed M. The development of a composite bone model for training on placement of dental implants. Int J Health Sci (Qassim) 2015;9:153–61.

[26] Fürst D, Senck S, Hollensteiner M, Esterer B, Augat P, Eckstein F, et al. Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone. Mater Sci Eng C 2017;76:1103–11. doi:10.1016/j.msec.2017.03.158.

[27] Curcio R, Perin GL, Chilvarquer I, Borri ML, Ajzen S. Use of models in surgical predictability of oral rehabilitations. Acta Cirúrgica Bras -VolActa Cirúrgica Bras -Vol 2007;22.

[28] Krenn MH, Piotrowski WP, Penzkofer R, Augat P. Influence of thread design on pedicle screw fixation. J Neurosurg Spine 2008;9:90–5. doi:10.3171/SPI/2008/9/7/090.

[29] Kim Y-K, Kim Y-J, Yun P-Y, Kim J-W. Effects of the taper shape, dual-thread, and length on the mechanical properties of mini-implants. Angle Orthod 2009;79:908–14. doi:10.2319/071808-374.1.

[30] Clyde J, Kosmopoulos V, Carpenter B. A Biomechanical Investigation of a Knotless Tension Band in Medial Malleolar Fracture Models in Composite Sawbones. J Foot Ankle Surg 2013;52:192–4. doi:10.1053/j.jfas.2012.11.001.

[31] PMDA. Outline of Reviews and Related Services n.d. https://www.pmda.go.jp/english/review- services/outline/0001.html (accessed September 28, 2019).

[32] Subrata Pal. Design of Artificial Human Joints & Organs. Springer; 2014. doi:10.1007/978-1-4614- 6255-2.

[33] Sedlin ED, Hirsch C. Factors Affecting the Determination of the Physical Properties of Femoral Cortical Bone. Acta Orthop Scand 1966;37:29–48. doi:10.3109/17453676608989401.

[34] Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: Potential implications for in vivo bone research. Endocrinology 1998;139:663–70. doi:10.1210/en.139.2.663.

[35] Pearce AI, Milz S, Schneider E. Animal Models for Implant Biomaterial Research in Bone : a Review. Eur Cells Mater 2007;13:1–10.

[36] ISO TC 150 / SC 5. International Organization for Standardization: ISO 9585:1990 — Implants for surgery — Determination of bending strength and stiffness of bone plates, 1990.

[37] ISO TC 150 / SC 1. International Organization for Standardization: ISO 5833:2002, Implants for surgery — Acrylic resin cements, 2014.

[38] ISO TC 150 / SC 4. International Organization for Standardization: ISO 14242-4:2018, Implants for surgery — Wear of total hip-joint prostheses-Part 4: Testing hip prostheses under variations in component positioning which results in direct edge loading, 2018.

[39] ISO TC 150 / SC 5. International Organization for Standardization: ISO 19213:2017 Implants for surgery — Test methods of material for use as a cortical bone model, 2017.

[40] ASTM. ASTM F543-07 Standard Specification and Test Methods for Metallic Medical Bone Screws, 2007. doi:10.1520/F0543-07E01.with.

[41] Japanese Standards Association. JIS T 0311 Mechanical Testing Methods for Bone Screws, 2009.

[42] Japanese Standards Association. JIS T 0312 Testing Methods for Bending Properties of Metallic Osteosynthesis Devices, 2009.

[43] Japanese Standards Association. JIS T 0313 Testing Method of Compression Bending Properties of Metallic Osteosynthesis Devices, 2009.

[44] Brown GA, McCarthy T, Bourgeault CA, Callahan DJ. Mechanical performance of standard and cannulated 4.0-mm cancellous bone screws. J Orthop Res 2000;18:307–12. doi:10.1002/jor.1100180220.

[45] Koistinen A, Santavirta SS, Kröger H, Lappalainen R. Effect of bone mineral density and amorphous diamond coatings on insertion torque of bone screws. Biomaterials 2005;26:5687–94. doi:10.1016/j.biomaterials.2005.02.003.

[46] Juvonen T, Nuutinen JP, Koistinen AP, Kröger H, Lappalainen R. Biomechanical evaluation of bone screw fixation with a novel bone cement. Biomed Eng Online 2015;14. doi:10.1186/s12938-015-0069- 6.

[47] ASTM. ASTM F1839-08, Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments, 2008. doi:10.1520/F1839-08R16.

[48] Sawbones, Biomechanical Products Catalog 2019.

[49] Chong ACM, Miller F, Buxton M, Friis EA. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone. J Biomech Eng 2007;129:487–93. doi:10.1115/1.2746369.

[50] Heiner AD. Structural properties of fourth-generation composite femurs and tibias. J Biomech 2008;41:3282–4. doi:10.1016/j.jbiomech.2008.08.013.

[51] Elfar J, Menorca RMG, Reed JD, Stanbury S. Composite bone models in orthopaedic surgery research and education. J Am Acad Orthop Surg 2014;22:111–20. doi:10.5435/JAAOS-22-02-111.

[52] Hausmann J-T. Sawbones in Biomechanical Settings - a Review. Osteo Trauma Care 2006;14:259–64. doi:10.1055/s-2006-942333.

[53] Cseke A, Heinemann R. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials. Med Eng Phys 2018;51:24–30. doi:10.1016/J.MEDENGPHY.2017.10.009.

[54] Inoue T, Shimada S, Hasegawa H, Sato K, Takabatake K, Tamura A, et al. Basics of Aneurysmal Clipping Surgery: The Importance of Wide Operative Field and Repeated Training. Surg Cereb Stroke 2013;41:163–9. doi:10.2335/scs.41.163.

[55] Ozawa K. Study on Mechanical Properties of Bone-Biomodeling. Tohoku Univ Master’s Thesis 2010.

[56] Ryder MI, Morio I. Current challenges for dental education in Japan and the United States. Jpn Dent Sci Rev 2011;47:23–30. doi:10.1016/j.jdsr.2010.05.001.

[57] Reznick RK, MacRae H. Teaching surgical skills - Changes in the wind. N Engl J Med 2006;355:2664–9. doi:10.1056/NEJMra054785.

[58] Cosman P, Hemli JM, Ellis AM, Hugh TJ. Learning the surgical craft: A review of skills training options. ANZ J Surg 2007;77:838–45. doi:10.1111/j.1445-2197.2007.04254.x.

[59] NSW Department of Primary Industries and Animal Research Review Panel. Use of animals in post- graduate surgical training | Animal Ethics Infolink. ARRP Policies Guidel n.d. https://www.animalethics.org.au/policies-and-guidelines/animals-in-teaching/surgical-training (accessed October 31, 2019).

[60] Sokollik C, Gross J, Buess G. New model for skills assessment and training progress in minimally invasive surgery. Surg Endosc 2004;18:495–500. doi:10.1007/s00464-003-9065-1.

[61] James TP, Pearlman JJ, Saigal A. Predictive force model for haptic feedback in bone sawing. Med Eng Phys 2013;35:1638–44. doi:10.1016/J.MEDENGPHY.2013.05.012.

[62] Pourkand A, Zamani N, Grow D. Mechanical model of orthopaedic drilling for augmented-haptics- based training. Comput Biol Med 2017;89:256–63. doi:10.1016/j.compbiomed.2017.06.021.

[63] da Cruz JAS, dos Reis ST, Cunha Frati RM, Duarte RJ, Nguyen H, Srougi M, et al. Does Warm-Up Training in a Virtual Reality Simulator Improve Surgical Performance? A Prospective Randomized Analysis. J Surg Educ 2016;73:974–8. doi:10.1016/j.jsurg.2016.04.020.

[64] Cecil J, Kumar MBBR, Gupta A, Pirela-Cruz M, Chan-Tin E, Yu J. Development of a virtual reality based simulation environment for orthopedic surgical training. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10034 LNCS, 2017, p. 206–14. doi:10.1007/978-3-319-55961-2_21.

[65] A mandibular model for surgical training, Exsurg®, Tecno Cast Co., Ltd. n.d. https://www.3bs.jp/orthopaedic/exsurg/w65550.htm (accessed September 20, 2019).

[66] Kosukegawa H, Mamada K, Kuroki K, Liu L, Inoue K, Hayase T, et al. Measurements of Dynamic Viscoelasticity of Poly (vinyl alcohol) Hydrogel for the Development of Blood Vessel Biomodeling*. J Fluid Sci Technol 2008;3. doi:10.1299/jfst.3.533.

[67] Mamada K, Kosukegawa H, Fridrici V, Kapsa P, Ohta M. Friction properties of PVA-H/steel ball contact under water lubrication conditions. Tribiology Int 2011;44:757–63. doi:10.1016/j.triboint.2010.12.014.

[68] Ozawa K, Yamaguchi K, Shibata Y, Nakayama T, Hashida Y, Ohta M. Analysis of Mechanical Properties and Microstructures for Development of Bone-Biomodelling. 6th World Congr Biomech 2010:525.

[69] Tawara D, Nagura K, Tsujikami T, Adachi T. Bone Quality Evaluation Based On Bone Remodeling and Multi-scale Simulation. Mech Eng Congr Japan 2012.

[70] Shimizu Y, Yu K, Tupin S, Yoshida H, Matsunaga T, Masuda T, et al. Development of blood vessel model for bionic humanoid. Proc JSME Annu Conf Robot Mechatronics 2018;2018:1P1-J03. doi:10.1299/jsmermd.2018.1P1-J03.

[71] Marinho MM, Adorno BV, Harada K, Mitsuishi M. Active constraints using vector field inequalities for surgical robots. Proc. - IEEE Int. Conf. Robot. Autom., vol. 35, 2018, p. 5364–71. doi:10.1109/ICRA.2018.8461105.

[72] Maruyama H, Tsubaki M, Okuda K, Omata S, Masuda T, Arai F. Optical Measurement of Deformation Distribution on Retinal Model for Vitreoretinal Surgery Training. 2018 IEEE Int. Conf. Cyborg Bionic Syst. CBS 2018, Institute of Electrical and Electronics Engineers Inc.; 2019, p. 278–81. doi:10.1109/CBS.2018.8612175.

[73] Totora GJ. Principles of anatomy and physiology. 1987.

[74] Currey JD. The relationship between the stiffness and the mineral content of bone. J Biomech 1969;2:477–80. doi:10.1016/0021-9290(69)90023-2.

[75] Saha S, Martin DL, Phillips A. Elastic and strength properties of canine long bones. Med Biol Eng Comput 1977;15:72–4. doi:10.1007/BF02441578.

[76] Bonfield W, Grynpas MD. Anisotropy of the Young’s modulus of bone. Nature 1977;270:453–4. doi:10.1038/270453a0.

[77] Martin RB. Determinants of the mechanical properties of bones. J Biomech 1991;24:79–88. doi:10.1016/0021-9290(91)90379-2.

[78] Martin RB, Boardman DL. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. J Biomech 1993;26:1047–54. doi:10.1016/S0021-9290(05)80004-1.

[79] Evans FG. The mechanical properties of bone. Springfield, Ill, C C Thomas 1957:37–48.

[80] Carter DR, Hayes WC. Bone compressive strength: The influence of density and strain rate. Science (80- ) 1976;194:1174–6. doi:10.1126/science.996549.

[81] Carter DR, Hayes WC. Compact bone fatigue damage-I. Residual strength and stiffness. J Biomech 1977;10:325–37. doi:10.1016/0021-9290(77)90005-7.

[82] Currey J. Measurement of the mechanical properties of bone: A recent history. Clin. Orthop. Relat. Res., vol. 467, 2009, p. 1948–54. doi:10.1007/s11999-009-0784-z.

[83] Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech 1999;32:437–41.

[84] Zysset PK, Edward Guo X, Edward Hoffler C, Moore KE, Goldstein SA. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 1999;32:1005–12. doi:10.1016/S0021-9290(99)00111-6.

[85] Hoc T, Henry L, Verdier M, Aubry D, Sedel L, Meunier A. Effect of microstructure on the mechanical properties of Haversian cortical bone. Bone 2006;38:466–74. doi:10.1016/j.bone.2005.09.017.

[86] Bala Y, Depalle B, Farlay D. Bone micromechanical properties are compromised during long‐term alendronate therapy independently of mineralization. J Bone Miner Res 2012;27:825–34. doi:10.1002/jbmr.1501.

[87] Faingold A, Cohen SR, Wagner HD. Nanoindentation of osteonal bone lamellae. J Mech Behav Biomed Mater 2012;9:198–206. doi:10.1016/j.jmbbm.2012.01.014.

[88] Feng L, Chittenden M, Schirer J, Dickinson M, Jasiuk I. Mechanical properties of porcine femoral cortical bone measured by nanoindentation. J Biomech 2012;45:1775–82. doi:10.1016/j.jbiomech.2012.05.001.

[89] Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 2004;37:27–35. doi:10.1016/S0021-9290(03)00257-4.

[90] Autefage A, Palierne S, Charron C, Swider P. Effective mechanical properties of diaphyseal cortical bone in the canine femur. Vet J 2012;194:202–9. doi:10.1016/j.tvjl.2012.04.001.

[91] Bonney H, Colston BJ, Goodman AM. Regional variation in the mechanical properties of cortical bone from the porcine femur. Med Eng Phys 2011;33:513–20. doi:10.1016/j.medengphy.2010.12.002.

[92] Imbert L, Aurégan J-CC, Pernelle K, Hoc T. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level. Bone 2014;65:18–24. doi:10.1016/j.bone.2014.04.030.

[93] Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D. The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng 2008;130. doi:10.1115/1.2838032.

[94] Johnson TPM, Socrate S, Boyce MC. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates. Acta Biomater 2010;6:4073–80. doi:10.1016/J.ACTBIO.2010.04.017.

[95] Bushby AJ, Ferguson VL, Boyde A. Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J Mater Res 2004;19:249–59. doi:10.1557/jmr.2004.19.1.249.

[96] Mirzaali MJ, Schwiedrzik JJ, Thaiwichai S, Best JP, Michler J, Zysset PK, et al. Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone 2016;93:196–211. doi:10.1016/j.bone.2015.11.018.

[97] van Haaren EH, van der Zwaard BC, van der Veen AJ, Heyligers IC, Wuisman PI, Smit TH. Effect of long-term preservation on the mechanical properties of cortical bone in goats. Acta Orthop 2008;79:708–16. doi:10.1080/17453670810016759.

[98] Stefan U, Michael B, Werner S. Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone. Bone 2010;47:1048–53. doi:10.1016/j.bone.2010.08.012.

[99] Kaye B, Randall C, Walsh D, Hansma P. The Effects of Freezing on the Mechanical Properties of Bone. Open Bone J 2012;4:14–9.

[100] Szebényi G, Görög P, Török Á, Kiss RM. Effect of different conservation methods on some mechanical properties of swine bone. WIT Trans. Biomed. Heal., vol. 17, 2013, p. 225–33. doi:10.2495/BIO130201.

[101] Richmond BG, Wright BW, Grosse I, Dechow PC, Ross CF, Spencer MA, et al. Finite element analysis in functional morphology. Anat. Rec. - Part A Discov. Mol. Cell. Evol. Biol., vol. 283, 2005, p. 259–74. doi:10.1002/ar.a.20169.

[102] Raffaella A, Petrescu FIT, Petrescu RV V., Antonio A. Biomimetic finite element analysis bone modeling for customized hybrid biological prostheses development. Am J Appl Sci 2016;13:1060–7. doi:10.3844/ajassp.2016.1060.1067.

[103] Mielke M, Nyakatura JA. Bone microstructure in finite element modeling: the functional role of trabeculae in the femoral head of Sciurus vulgaris. Zoomorphology 2019;138:535–47. doi:10.1007/s00435-019-00456-2.

[104] Marco M, Rodríguez-Millán M, Santiuste C, Giner E, Henar Miguélez M. A review on recent advances in numerical modelling of bone cutting. J Mech Behav Biomed Mater 2015;44:179–201. doi:10.1016/J.JMBBM.2014.12.006.

[105] Takabi B, Tai BL. A review of cutting mechanics and modeling techniques for biological materials. Med Eng Phys 2017;45:1–14. doi:10.1016/j.medengphy.2017.04.004.

[106] An YH, Draughn RA. Mechanical testing of bone and the bone-implant interface. 1st editio. CRC Press; 1999. doi:10.1201/9781420073560.

[107] Chevalier J, Gremillard L. Ceramics for medical applications: A picture for the next 20 years. J Eur Ceram Soc 2009;29:1245–55. doi:10.1016/j.jeurceramsoc.2008.08.025.

[108] Abrão AM, Faria PE, Rubio JCC, Reis P, Davim JP. Drilling of fiber reinforced plastics: A review. J Mater Process Technol 2007;186:1–7. doi:10.1016/j.jmatprotec.2006.11.146.

[109] Ohta M, Shibata Y, Katakura Y, Oikawa N. Bone model. P2008-250004A, 2008.

[110] Merchant ME. Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 1945;16:267–75. doi:10.1063/1.1707586.

[111] Merchant ME. Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. J Appl Phys 1945;16:318–24. doi:10.1063/1.1707596.

[112] Lee EH, Shaffer BW. The Theory of Plasticity Applied to Machining. vol. 18. 1951.

[113] Kobayashi A. Machining of Plastics. McGraw-Hill; 1967.

[114] Nakayama K. Cutting Theory (in Japanese). Tokyo, Japan: Corona Publishing; 1994.

[115] Sanda A. Ultrasonically assisted drilling of carbon fibre reinforced plastics and Ti6Al4V. J Manuf Process 2016;22:169–76. doi:10.1016/j.jmapro.2016.03.003.

[116] Vigneshwaran S, Uthayakumar · M, Arumugaprabu · V. Review on Machinability of Fiber Reinforced Polymers: A Drilling Approach. Silicon 2018;10:2295–305. doi:10.1007/s12633-018-9764-9.

[117] Mishra BP, Mishra D, Panda P. Drilling of glass fibre reinforced polymer /nanopolymer composite laminates: a review. vol. 8. 2018.

[118] Hocheng H, Puw HY. Machinability of Fiber-Reinforced Thermoplastics in Drilling. Trans ASME 1993;115:146–9.

[119] Mathew J, Ramakrishnan N, Naik NK. Investigations into the effect of geometry of a trepanning tool on thrust and torque during drilling of GFRP composites. J Mater Process Technol 1999;91:1–11.

[120] Lin S-C, Shen J-M. Drilling Unidirectional Glass Fiber-Reinforced Composite Materials at High Speed. J Compos Mater 1999;33:827–51. doi:10.1177/002199839903300903.

[121] Tsao CC, Hocheng H. The effect of chisel length and associated pilot hole on delamination when drilling composite materials. Int J Mach Tools Manuf 2003;43:1087–92. doi:10.1016/S0890- 6955(03)00127-5.

[122] Mohan NS, Ramachandra A, Kulkarni SM. Machining of Fiber-reinforced Thermoplastics: Influence of Feed and Drill Size on Thrust Force and Torque during Drilling. J Reinf Plast Compos 2005;24. doi:10.1177/0731684405049865.

[123] Faria PE, Campos RF, Abrao a. M, Godoy GCD, Davim JP. Thrust Force and Wear Assessment When Drilling Glass Fiber-Reinforced Polymeric Composite. J Compos Mater 2008;42:1401–14. doi:10.1177/0021998308090456.

[124] Palanikumar K. Experimental investigation and optimisation in drilling of GFRP composites. Measurement 2011;44:2138–48. doi:10.1016/j.measurement.2011.07.023.

[125] Turki Y, Habak M, Velasco R, Aboura Z, Khellil K, Vantomme P. Experimental investigation of drilling damage and stitching effects on the mechanical behavior of carbon/epoxy composites. Int J Mach Tools Manuf 2014;87:61–72. doi:10.1016/j.ijmachtools.2014.06.004.

[126] John A. Hobkirk, Roger M. Watson LJJ. Introducing dental implants. 1st editio. Elsevier; 2003.

[127] Zimmer. Zimmer® NCB® Plating System Catalog. n.d.

[128] Zimmer. NCB® Distal Femur System Catalog. n.d.

[129] Natali C, Ingle P, Dowell J. Orthopaedic Bone Drills – Can They Be Improved? J Bone Joint Surg Br 1996;78-B:357–62. doi:10.1302/0301-620x.78b3.0780357.

[130] Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res 2006;17:109–14. doi:10.1111/j.1600- 0501.2005.01211.x.

[131] Erikssons AR, Albrekt T, Albrektsson B. Heat caused by drilling cortical bone. Acta Orthop Scand 1984:629–31.

[132] Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D, et al. Cortical bone drilling and thermal osteonecrosis. Clin Biomech 2012;27:313–25. doi:10.1016/j.clinbiomech.2011.10.010.

[133] Pandey RK, Panda SS. Drilling of bone: A comprehensive review. J Clin Orthop Trauma 2013;4:15–30. doi:10.1016/j.jcot.2013.01.002.

[134] Abouzgia MB, Symington JM. Effect of drill speed on bone temperature. Int J Oral Maxillofac Surg 1996;25:394–9. doi:10.1016/S0901-5027(06)80040-8.

[135] Hillery MT, Shuaib I. Temperature effects in the drilling of human and bovine bone 1999;93:302–8.

[136] Folkman J. Heat generation during implant drilling: The significance of motor speed. J Oral Maxillofac Surg 2002;60:1160–9. doi:10.1053/joms.2002.34992.

[137] Bachus KN, Rondina MT, Hutchinson DT. The effects of drilling force on cortical temperatures and their duration: An in vitro study. Med Eng Phys 2000;22:685–91. doi:10.1016/S1350-4533(01)00016-9.

[138] Kim S-J, Yoo J, Kim Y-S, Shin S-W. Temperature change in pig rib bone during implant site preparation by low-speed drilling. J Appl Oral Sci 2010;18:522–7. doi:10.1590/S1678- 77572010000500016.

[139] Lee JE, Ozdoganlar OB, Rabin Y. An experimental investigation on thermal exposure during bone drilling. Med Eng Phys 2012;34:1510–20. doi:10.1016/j.medengphy.2012.03.002.

[140] Palmisano AC, Tai BL, Belmont B, Irwin TA, Shih A, Holmes JR. Comparison of Cortical Bone Drilling Induced Heat Production Among Common Drilling Tools. J Orthop Trauma 2015;29:e188–93. doi:10.1097/BOT.0000000000000240.

[141] Noorazizi MS, Izamshah R, Kasim MS. Effects of Drill Geometry and Penetration Angle on Temperature and Holes Surfaces for Cortical Bovine Bone: An in Vitro Study. Procedia Eng 2017;184:70–7. doi:10.1016/j.proeng.2017.04.072.

[142] Sener BC, Dergin G, Gursoy B, Kelesoglu E, Slih I. Effects of irrigation temperature on heat control in vitro at different drilling depths. Clin Oral Implants Res 2009;20:294–8. doi:10.1111/j.1600- 0501.2008.01643.x.

[143] Hou Y, Li C, Ma H, Zhang Y, Yang M, Zhang X. An Experimental Research on Bone Drilling Temperature in Orthopaedic Surgery. Open Mater Sci J 2015;9:178–88.

[144] Kirstein K, Dobrzyński M, Kosior P, Chrószcz A, Dudek K, Fita K, et al. Infrared Thermographic Assessment of Cooling Effectiveness in Selected Dental Implant Systems. Biomed Res Int 2016;2016. doi:10.1155/2016/1879468.

[145] Feldmann A, Gavaghan K, Stebinger M, Williamson T, Weber S, Zysset P. Real-Time Prediction of Temperature Elevation During Robotic Bone Drilling Using the Torque Signal. Ann Biomed Eng 2017;45:2088–97. doi:10.1007/s10439-017-1845-1.

[146] Ortmaier T, Weiss H, Döbele S, Schreiber U. Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement. Int J Med Robot Comput Assist Surg 2006;2:350–63. doi:10.1002/rcs.

[147] Mitsuishi M, Sugita N, Harada K. Super-microsurgical robotic platforms and investigation of super- precise manufacturing technologies. Seimitsu Kogaku Kaishi/Journal Japan Soc Precis Eng 2014;80:36–41. doi:10.2493/jjspe.80.36.

[148] Bouazza-Marouf K, Browbank I, Hewit JR. Robot-assisted invasive orthopaedic surgery. Mechatronics 1996;6:381–97. doi:10.1016/0957-4158(96)00002-5.

[149] Nguyen Y, Bernardeschi D, Sterkers O. Potential of Robot-Based Surgery for Otosclerosis Surgery. Otolaryngol Clin North Am 2018;51:475–85. doi:10.1016/J.OTC.2017.11.016.

[150] Kawana H, Usuda S, Yu K, Nakagawa T, Ohnishi K. A remote controlled haptic drilling robot for oral and maxillofacial surgery. Int J Oral Maxillofac Surg 2017;46:207. doi:10.1016/J.IJOM.2017.02.704.

[151] Wazid M, Das AK, Lee J-H. User authentication in a tactile internet based remote surgery environment: Security issues, challenges, and future research directions. Pervasive Mob Comput 2019;54:71–85. doi:10.1016/J.PMCJ.2019.02.004.

[152] Bertollo N, Walsh WR. Drilling of Bone: Practicality, Limitations and Complications Associated with Surgical Drill-Bits. 2011.

[153] Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg 2008;128:71–7. doi:10.1007/s00402-007-0427- 3.

[154] Jacobs CH, Pope MH, Berry JT, Hoaglund F. A study of the bone machining process-Orthogonal cutting. J Biomech 1974;7. doi:10.1016/0021-9290(74)90051-7.

[155] Allotta B, Belmonte F, Bosio L, Dario P. Study on a mechatronic tool for drilling in the osteosynthesis of long bones: Tool/bone interaction, modeling and experiments. Mechatronics 1996;6:447–59. doi:10.1016/0957-4158(96)00005-0.

[156] Hobkirk JA, Rusiniak K. Investigation of variable factors in drilling bone. J Oral Surg (Chic) 1977;35:968–73.

[157] Bertollo N, Milne HRM, Ellis LP, Stephens PC, Gillies RM, Walsh WR. A comparison of the thermal properties of 2- and 3-fluted drills and the effects on bone cell viability and screw pull-out strength in an ovine model. Clin Biomech 2010;25:613–7. doi:10.1016/j.clinbiomech.2010.02.007.

[158] Larry S. M, Carl H. Temperatures Measured in Human Cortical Bone when Drilling. J Bone Joint Surg Am 1972;54A:297–308. doi:10.2106/00004623-197254020-00008.

[159] Matthews LS, Green CA, Goldstein SA. The thermal effects of skeletal fixation-pin insertion in bone. J Bone Jt Surg - Ser A 1984;66:1077–83. doi:10.2106/00004623-198466070-00015.

[160] Schmidt AO, Roubik JO. Distribution of Heat Generated in Drilling. Trans ASME 1949;71:245–52.

[161] Pandey RK, Panda SS. Modeling of temperature in orthopaedic drilling using fuzzy logic. Appl. Mech. Mater., vol. 249–250, 2013, p. 1313–8. doi:10.4028/www.scientific.net/AMM.249-250.1313.

[162] Tai BL, Palmisano AC, Belmont B, Irwin TA, Holmes J, Shih AJ. Numerical evaluation of sequential bone drilling strategies based on thermal damage. Med Eng Phys 2015;37:855–61. doi:10.1016/J.MEDENGPHY.2015.06.002.

[163] Al-Abdullah KIA lateef, Abdi H, Lim CP, Yassin W. Force and temperature modelling of bone milling using artificial neural networks. Meas J Int Meas Confed 2018;116:25–37. doi:10.1016/j.measurement.2017.10.051.

[164] Vilimek M, Horak Z, Goldmann T, Tichy P. Experimental Measurement and Numerical Simulation of Temperature During Drilling With Four Specific Dental Drills 2018:1–5.

[165] Feldmann A, Wili P, Maquer G, Zysset P. The thermal conductivity of cortical and cancellous bone. Eur Cells Mater 2018;35:25–33. doi:10.22203/eCM.v035a03.

[166] Chacon GE, Bower DL, Larsen PE, McGlumphy EA, Beck FM. Heat production by 3 implant drill systems after repeated drilling and sterilization. J Oral Maxillofac Surg 2006;64:265–9. doi:10.1016/j.joms.2005.10.011.

[167] Wiggins KL, Malkin S. Drilling of bone. J Biomech 1976;9:553–9. doi:10.1016/0021-9290(76)90095-6.

[168] MacAvelia T, Salahi M, Olsen M, Crookshank M, Schemitsch EH, Ghasempoor A, et al. Biomechanical measurements of surgical drilling force and torque in human versus artificial femurs. J Biomech Eng 2012;134:124503. doi:10.1115/1.4007953.

[169] Möhlhenrich SC, Modabber A, Steiner T, Mitchell DA, Hölzle F. Heat generation and drill wear during dental implant site preparation: Systematic review. Br J Oral Maxillofac Surg 2015;53:679–89. doi:10.1016/j.bjoms.2015.05.004.

[170] Lee J, Chavez CL, Park J. Parameters affecting mechanical and thermal responses in bone drilling: A review. J Biomech 2018;71:4–21. doi:10.1016/J.JBIOMECH.2018.02.025.

[171] Wang W, Shi Y, Yang N, Yuan X. Experimental analysis of drilling process in cortical bone. Med Eng Phys 2014;36:261–6. doi:10.1016/j.medengphy.2013.08.006.

[172] Tuijthof GJM, Frühwirt C, Kment C. Influence of tool geometry on drilling performance of cortical and trabecular bone. Med Eng Phys 2013;35:1165–72. doi:10.1016/j.medengphy.2012.12.004.

[173] L. Roseiro, C. Veiga, V. Maranha, A.Neto, N. Laraqi, A. Baïri NA. Induced Bone Tissue Temperature in Drilling Procedures: A Comparative Laboratory Study with and without Lubrication. Int J Medical, Heal Biomed Bioeng Pharm Eng 2014;8:828–31.

[174] Li S, Abdel-Wahab A, Demirci E, Silberschmidt V V. Penetration of cutting tool into cortical bone: Experimental and numerical investigation of anisotropic mechanical behaviour. J Biomech 2014;47:1117–26. doi:10.1016/J.JBIOMECH.2013.12.019.

[175] Sui J, Sugita N, Ishii K, Harada K, Mitsuishi M. Mechanistic modeling of bone-drilling process with experimental validation. J Mater Process Technol 2014;214:1018–26. doi:10.1016/j.jmatprotec.2013.11.001.

[176] Lughmani WA, Bouazza-Marouf K, Ashcroft I. Drilling in cortical bone: a finite element model and experimental investigations. J Mech Behav Biomed Mater 2015;42:32–42. doi:10.1016/j.jmbbm.2014.10.017.

[177] Khurshid A, Bahadur. IM, Ahmed. N. Cortical bone drilling, An experimental and numerical study. Technol Heal Care 2015;23:223–31.

[178] Liao Z, Axinte DA. On monitoring chip formation, penetration depth and cutting malfunctions in bone micro-drilling via acoustic emission. J Mater Process Technol 2016;229:82–93. doi:10.1016/j.jmatprotec.2015.09.016.

[179] Feldmann A, Ganser P, Nolte L, Zysset P. Orthogonal cutting of cortical bone: Temperature elevation and fracture toughness. Int J Mach Tools Manuf 2017;118–119:1–11. doi:10.1016/j.ijmachtools.2017.03.009.

[180] Tai BL, Kao Y-T, Payne N, Zheng Y, Chen L, Shih AJ. 3D Printed composite for simulating thermal and mechanical responses of the cortical bone in orthopaedic surgery. Med Eng Phys 2018;61:61–8. doi:10.1016/J.MEDENGPHY.2018.08.004.

[181] Allan W, Williams ED, Kerawala CJ. Effects of repeated drill use on temperature of bone during preparation for osteosynthesis self-tapping screws. Br J Oral Maxillofac Surg 2005;43:314–9. doi:10.1016/j.bjoms.2004.11.007.

[182] Marciniak J, Paszenda Z, Kaczmarek M, Szewczenko J, Basiaga M, Gierzyńska-Dolna M, et al. Wear investigations of tools used in bone surgery New ceramic-polymer composite for epithesis with aluminum-silicate microspheres View project Wear investigations of tools used in bone surgery. J Achiev Mater Manuf Eng 2007;20:259–62.

[183] Tawara D, Tsujikami T, Okano Y. GS2-11 Verification of similarity of drilling properties between developed new artificial bone model and real bone(GS2: Orthopaedic Biomechanics II). Proc Asian Pacific Conf Biomech Emerg Sci Technol Biomech 2015;2015.8:154. doi:10.1299/jsmeapbio.2015.8.154.

[184] Tawara D, Toyono S, Tsujikami T, Okano Y. Analysis of drilling properties between the artificial bone models having different micro structure for surgery education. Proc Bioeng Conf Annu Meet BED/JSME 2018;2018.30:2C19. doi:10.1299/jsmebio.2018.30.2C19.

[185] Tai BL, Wang AC, Joseph JR, Wang PI, Sullivan SE, Mckean EL, et al. A physical simulator for endoscopic endonasal drilling techniques: technical note. J Neurosurg 2016;124:811–6. doi:10.3171/2015.3.JNS1552.

[186] Ina K, Takano N, Toyama K. Bone model. JPH06230717A, 1993.

[187] Alauddin M, Choudhury IA, El Baradie MA, Hashmi MSJ. Plastics and their machining: A review. J Mater Process Tech 1995;54:40–6. doi:10.1016/0924-0136(95)01917-0.

[188] Jagtap TU, Mandave HA. Machining of Plastics: A Review. Int J Eng Res Gen Sci 2015;3:577–81.

[189] Nassar MMA, Arunachalam R, Alzebdeh KI. Machinability of natural fiber reinforced composites: a review. Int J Adv Manuf Technol 2017;88:2985–3004. doi:10.1007/s00170-016-9010-9.

[190] Irisawa T, Iwamura R, Kozawa Y, Kobayashi S, Tanabe Y. Recycling methods for thermoplastic-matrix composites having high thermal stability in focusing on reuse of the carbon fibers. TANSO 2017;2017:175–81. doi:10.7209/tanso.2017.175.

[191] Tanaka K, Kashihara H, Katayama T. Vacuum assisted high speed compression molding and evaluation of mechanical properties of continuous carbon fiber reinforced polycarbonate composite. Zair Soc Mater Sci Japan 2011;60:251–8. doi:10.2472/jsms.60.251.

[192] Yan X, Imai Y, Shimamoto D, Hotta Y. Relationship study between crystal structure and thermal/mechanical properties of polyamide 6 reinforced and unreinforced by carbon fiber from macro and local view. Polymer (Guildf) 2014;55:6186–94. doi:10.1016/j.polymer.2014.09.052.

[193] Rezaei F, Yunus R, Ibrahim NA, Mahdi ES. Development of short-carbon-fiber-reinforced polypropylene composite for car bonnet. Polym - Plast Technol Eng 2008;47:351–7. doi:10.1080/03602550801897323.

[194] Jagtap K, Pawade R. Experimental Investigation on the Influence of Cutting Parameters on Surface Quality in SPDT of PMMA. vol. 7. 2014.

[195] Abboud M, Vol S, Duguet E, Fontanille M. PMMA-based composite materials with reactive ceramic fillers: Part III: Radiopacifying particle-reinforced bone cements. J Mater Sci Mater Med 2000;11:295–300. doi:10.1023/A:1008981917653.

[196] Kurimoto M, Ozaki H, Yamashita Y, Funabashi T, Kato T, Suzuoki Y. Dielectric properties and 3D printing of UV-cured acrylic composite with alumina microfiller. IEEE Trans Dielectr Electr Insul 2016;23:2985–92. doi:10.1109/TDEI.2016.7736862.

[197] Saleh KJ, El Othmani MM, Tzeng TH, Mihalko WM, Chambers MC, Grupp TM. Acrylic bone cement in total joint arthroplasty: A review. J Orthop Res 2016;34:737–44. doi:10.1002/jor.23184.

[198] Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech 1969;2:1–11. doi:10.1016/0021-9290(69)90036-0.

[199] Linde F, Sørensen HCF. The effect of different storage methods on the mechanical properties of trabecular bone. vol. 26. 1993. doi:10.1016/0021-9290(93)90072-M.

[200] Stelzle F, Frenkel C, Riemann M, Knipfer C, Stockmann P, Nkenke E. The effect of load on heat production, thermal effects and expenditure of time during implant site preparation - an experimental ex vivo comparison between piezosurgery and conventional drilling. Clin Oral Implants Res 2014;25. doi:10.1111/clr.12077.

[201] Surgical Manual BIOMET 3i. n.d.

[202] Matthews LS, Green CA, Goldstein SA. The thermal effects of skeletal fixation-pin insertion in bone. J Bone Jt Surg - Ser A 1984;66:1077–83. doi:10.2106/00004623-198466070-00015.

[203] Wu JW, Sung WF, Chu H Sen. Thermal conductivity of polyurethane foams. Int J Heat Mass Transf 1999;42:2211–7. doi:10.1016/S0017-9310(98)00315-9.

[204] Nakayama K. Classification of chips form. J Japan Soc Precis Eng 1976;42:74–80. doi:10.2493/jjspe1933.42.74.

[205] Ono K, Kawamura S, Kitano M, Shimamune T. Theoretical machining engineering. Gendai Kogaku Publisher; 1979.

[206] Charnley J. Anchorage of the Femoral Head Prosthesis. J Bone Jt Surg Br Vol 1960;42-B:28–30. doi:10.1302/0301-620X.42B1.28.

[207] Ashby MF. Materials Selection in Mechanical Design 3rd edition. 2005.

[208] Schmidt-Rohr K, Kulik AS, Beckham HW, Ohlemacher A, Pawelzik U, Boeffel C, et al. Molecular Nature of the β Relaxation in Poly(methyl methacrylate) Investigated by Multidimensional NMR. Macromolecules 1994;27:4733–45. doi:10.1021/ma00095a014.

[209] Merenga AS, Katana GA. Dynamic Mechanical Analysis of PMMA-Cellulose Blends. Int J Polym Mater 2010;60:115–23. doi:10.1080/00914030903538553.

[210] Gill PS, Marcozzi CL, Groves IF. The characterization of poly(methyl methacrylate), (PMMA), by dielectric analysis and the study of the effects of beta-alkyl substitution on the dielectric properties. Sixth Int Conf Dielectr Mater Meas Appl 1992:429–32.

[211] Ina K, Takano N, Toyama K. Bone model. JPH06230718A, 1994.

[212] Muramoto Y. Development of Bone Biomodel Made of Acrylic Composite Materials for Drilling. Tohoku University, 2017.

[213] ASTM. ASTM E399-12, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials, 2012. doi:10.1520/E0399-09E02.2.

[214] ASTM. ASTM E1820-2011, Standard Test Method for Measurement of Fracture Toughness 2011. doi:10.1520/e1820-11.

[215] Roche S, Pavan S, Loubet J., Barbeau P, Magny B. Influence of the substrate characteristics on the scratch and indentation properties of UV-cured clearcoats. Prog Org Coatings 2003;47:37–48. doi:10.1016/S0300-9440(03)00017-1.

[216] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 1992;7:1564–83. doi:10.1557/adv.2015.9.

[217] Murphy BP, Prendergast PJ. Measurement of non-linear microcrack accumulation rates in polymethylmethacrylate bone cement under cyclic loading n.d.;1:7–9.

[218] Saha S, Pal S. Mechanical properties of bone cement: A review. J Biomed Mater Res 1984;18:435–62. doi:10.1002/jbm.820180411.

[219] Alhareb AO, Akil HM, Ahmad ZA. Impact strength, fracture toughness and hardness improvement of PMMA denture base through addition of nitrile rubber/ceramic fillers. Saudi J Dent Res 2017;8:26–34. doi:10.1016/j.sjdr.2016.04.004.

[220] Vashishth D, Behiri JC, Bonfield W. Crack growth resistance in cortical bone: Concept of microcrack toughening. J Biomech 1997;30:763–9. doi:10.1016/S0021-9290(97)00029-8.

[221] Yan J, Daga A, Kumar R, Mecholsky JJ. Fracture toughness and work of fracture of hydrated, dehydrated, and ashed bovine bone. J Biomech 2008;41:1929–36. doi:10.1016/j.jbiomech.2008.03.037.

[222] Libonati F, Vergani L. Understanding the structure–property relationship in cortical bone to design a biomimetic composite. Compos Struct 2016;139:188–98. doi:10.1016/j.compstruct.2015.12.003.

[223] International Standard. Sensory analysis-Methodology-Ranking Analyse sensorielle-Méthodologie- Classement par rangs. vol. 8587. 2006.

[224] Japanese Standards Association. JIS Z 9080: 2004 Sensory analysis-Methodology. 2004.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る